
Breaking the Trust Dependence on Third Party Processes for
Reconfigurable Secure Hardware

Aimee Coughlin, Greg Cusack, Jack Wampler, Eric Keller, Eric Wustrow
University of Colorado Boulder

ABSTRACT
Modern CPU designs are beginning to incorporate secure hardware
features, but leave developers with little control over both the set
of features and when and whether updates are available. Reconfig-
urable logic (e.g., FPGAs) has been proposed as an alternative as it
is both hardware, so can have similar capabilities at a reasonable
performance degradation, and programmable, allowing customiza-
tion of the secure hardware. This programmability, however, opens
new attack vectors that allow an adversary to re-program the FPGA.
Past attempts to solve this rely on a party maintaining a shared key
with the FPGA, but these business processes to keep that key secret
have been shown to be quite vulnerable.

In this paper, we propose a new mechanism which eliminates
the trust dependence on third party processes. This new mecha-
nism consists of a self-provisioning stage, where keys are generated
internal to the FPGA and never exposed externally, coupled with
a secure update mechanism which allows updates to be governed
by a policy defined by the secure hardware application. To demon-
strate, we fully implemented these mechanisms on a Xilinx Zynq
UltraScale+ FPGA along with an example secure co-processor with
remote attestation with a flexible root of trust (in contrast to Intel
SGX which fixes the root of trust to be Intel). Our performance
evaluation of two applications, a password manager and a contact
matching application, illustrates using FPGAs is practical.

CCS CONCEPTS
• Security and privacy → Key management; Tamper-proof
and tamper-resistant designs; •Hardware→Reconfigurable
logic and FPGAs.

KEYWORDS
Secure Hardware; FPGA; Trusted Execution Environment; SGX

ACM Reference Format:
Aimee Coughlin, Greg Cusack, Jack Wampler, Eric Keller, Eric Wustrow.
2019. Breaking the Trust Dependence on Third Party Processes for Reconfig-
urable Secure Hardware. In The 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA ’19), February 24–26, 2019, Sea-
side, CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3289602.3293895

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FPGA ’19, February 24–26, 2019, Seaside, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6137-8/19/02. . . $15.00
https://doi.org/10.1145/3289602.3293895

Feature TPM TZ SGX
Flexible Root of Trust   #

TEE #   
Remote Attestation  #  
Peripheral Access #  #

Trusted Input # G# #
Hardware RNG  #  

Hardware Crypto  G# G#
Secure Storage  #  

Shared Architecture G#   
Oblivious Memory # #  
Cache SC Defense  # #
TLB SC Defense #  #

Table 1: Comparing the features supported by Trusted Platform
Modules (TPMs), ARM TrustZone (TZ), and Intel SGX. represents
support, G# represents partial support or support that depends on
how the design is instantiated, and # represents no support.

1 INTRODUCTION
Secure hardware provides many benefits for securing computing
systems. It enables encrypting sensitive data where physical access
to the device is required to decrypt it [7], authenticating data feed
systems [41], scaling blockchain transactions [26], and has the
promise to address many of the security challenges with cloud
computing [15]. However, despite the potential benefits, we are
stuck with a constrained ecosystem of secure hardware providers.

Due to the cost, time, and complexity of designing and manufac-
turing proceessor hardware [4, 5], the design choices and trade-offs
are decided unilaterally by the small set of chip manufacturers.
This results in scattered support of a wide range of features, and
ultimately limited selection for users of secure hardware. Table 1
presents a summary of several secure hardware systems and the
features they choose to support. Even in this modest set of features,
there is no existing system that offers every feature, despite each
system implementing features the other does not.

Furthermore, updates to secure hardware systems in response to
discovered vulnerabilities [11, 13, 14, 17, 33, 36, 37, 40] or demand
for new features are at worst impossible, and at best gated by
the chip manufacturers, leaving system designers that use secure
hardware at the mercy of a few companies.

In this paper, we seek to empower the individuals that ultimately
use secure hardware to make decisions that are right for their needs,
rather than the hardware manufacturers making choices for them.

Prior research has proposed that programmable hardware, such
as field-programmable gate arrays (FPGAs), are suitable for im-
plementing security functions [19–23, 28, 29, 32, 35]. FPGAs are
programmable, providing flexibility to define the exact features that
are needed, while allowing updates and retaining the performance

https://doi.org/10.1145/3289602.3293895
https://doi.org/10.1145/3289602.3293895
https://doi.org/10.1145/3289602.3293895


benefits of hardware [20, 23]. Importantly, FPGAs are no longer
special purpose devices, but becoming pervasive in computing plat-
forms such as cloud computing (e.g.,Amazon [1] and Microsoft data
centers [10, 18, 31]), and in embedded systems for which secure
hardware can provide great benefits, such as self-driving cars [2].

The programmable nature of FPGAs, however, raises a significant
concern with regards to using them as a basis for realizing secure
hardware – an attacker can read or modify the contents of the FPGA.
This is in contrast to secure hardware systems built into silicon,
which are “fixed”, and cannot have their functionality changed
after manufacture. Modern FPGAs include hardware that supports
encrypted bitstreams [9, 39]. While an improvement, we argue that
this doesn’t completely solve the problem, but this only reduces
the control of reprogrammability to a single party. This party is
responsible for generating and maintaining the keys that protect
access and functionality of the device. In other words, it depends
on human / business processes, which, as history has shown with
the frequent password and other data leaks [38] (including secure
boot keys [11]), cannot be counted on.

In this paper, we introduce a novel mechanism to address this
problem where we build on the capabilities provided by modern
FPGAs and put the device itself in control over the programmability,
thus removing the trust dependence on a third party’s processes and
providing developers with control over how the secure hardware
is protected. This consists of two key aspects. The first is a self-
provisioning mechanism where a device is initially brought up in
a provisioning configuration, and then internally generates keys,
and reprograms itself using these keys. In this way, the keys which
control the configuration of the FPGA are only accessible internal to
the device. The second is a policy driven update mechanism, where
the hardware running in the FPGA is programmed with a policy
which determines under what conditions to allow an update. In this
way, we empower the secure hardware developer with the choice
for how updates can occur (which could include a policy to block
all updates). This allows the developer to choose (and commit to)
how updates are (or aren’t) performed on the device, allowing them
to decide between a locked-down design similar to silicon-based
secure hardware, or leaving systems flexible once deployed.

We demonstrate that this new mechanism is practical today with
off-the-shelf FPGAs. Our implementation uses the Xilinx Zynq
UltraScale+ MPSoC FPGA on the ZCU102 board. The application
of this is broad, but as a single running example, we implement a
secure coprocessorwith an Intel SGX-like remote attestation feature.
Unlike SGX’s attestation, our remote attestation is designed to allow
the device provisioner to choose who the root of trust is (rather than
Intel’s fixed root of trust being Intel), allowing for a wider range of
trusted third parties to enable verified remote execution. We further
use this running example to enable updates, which are motivated in
this case to enable a response to newly discovered vulnerabilities,
such as Spectre [25]. We provide an SDK to compile programs to
execute in this secure co-processor environment. Unique to this
FPGA environment, we can compile the developer’s C code to either
hardware using high-level synthesis, or to software to run on a soft
processor (a CPU implemented using the FPGA logic). We built
two applications on top of this customized secure co-processor – a
password manager (similar to the example in the Intel SGX tutorial),

Adversary

FPGA

Trusted
Party

Config IP Protection

Desired config

Encrypt/
sign

Custom 
Secure 
Hardware

Figure 1: Custom secure hardware on an FPGAwith IP protection. A
designated party shares a cryptographic keywith the FPGAwhich is
used to ensure only FPGA configuration signed/encrypted with this
key can re-program the FPGA. The designated party uses processes
to protect the storage of the key, but an adversary can attack those
processes and gain access to the shared key.

and a contact matching application (emulating the SGX-enabled
private contact discovery service operated by Signal [27]).

In the remainder of the paper we first discuss the past efforts of
secure hardware on FPGAs (Section 2).We then provide an overview
of the system architecture, threat model, and motivating example
in Section 3. We describe the the architecture in Sections 4 and 5.
We then describe the implementation of the self-provisioning and
secure update mechanism (Section 6) and the secure co-processor
with remote attestation (Section 7). We wrap up with evaluation
(Section 8), and conclusions and future work (Section 9).

2 PAST ATTEMPTS (ANDWHY PROCESS
TRUST MATTERS)

In this paper we propose using FPGAs as a platform to build secure
hardware. Here, we discuss past works, and identify the key unmet
challenge in reaching this goal.

2.1 Security Functions on an FPGA
The idea of implementing security functions on an FPGA is not
new. In fact, it has been proposed for decades. Research has been
published on everything from network security applications (e.g.,
firewalls [28] and intrusion detection [35]) to cryptographic algo-
rithms [21]. More recently, and highly related to our motivating
examples, the SAFES architecture demonstrated the use of FPGA
components to provide security primitives and guarantee invariants
in program execution [23], and Sanctum is a RISC ISA extension
realized on an FPGA that mitigates software side-channels and
protects DRAM access [20].

Although these examples demonstrate the ability to implement
security functions on an FPGA, they do not address the somewhat
obvious threat of an adversary who reprograms the FPGA, changing
the device configuration and functionality. We argue that for many
secure hardware applications, this is a particularly important threat



to address. For instance, if a device manufacturer wishes to offer
remote attestation features (such as in Intel SGX) or hardware-
protected keys for hardware security modules (HSMs), their design
must protect against an adversary with physical (or remote) control
over the device after its initial configuration.

By default FPGA’s provide no protection to their configuration,
allowing an adversary to read or reprogram whatever functionality
is placed in it, allowing them to read out sensitive keys or change
the device’s behavior.

2.2 Security Functions with Bitstream
Encryption

In response to this, FPGA manufacturers introduced bitstream pro-
tection technology, whether for intellectual property (IP) protection
or specifically to support secure hardware [9, 39]. As illustrated
in Figure 1, a third party programs a key into the FPGA and then
maintains that key (external to the FPGA) so that it can be used to
create an FPGA configuration that is encrypted and/or signed. In
this way, knowledge of that key is needed to program the FPGA or
read its configuration.

While an improvement, it fundamentally depends on a human-
driven / business process to protect the key that is programmed
into the FPGA. Unfortunately, this has proven to be a challenging
problem and particularly fragile means for security. We have seen
countless data leaks, including passwords [38] and even secure boot
keys [11] (things that we should be able to assume won’t be leaked).
In addition, governments can compel key-holders to divulge their
secrets in order to attack individuals, such as in the FBI vs. Apple [3],
ultimately undermining end-user trust in the systems. In short, IP
protections only serve to focus an adversary’s efforts on the process,
and once successful would still be able to read or modify any FPGA
that was under the ‘protection’ of that party.

3 SYSTEM ARCHITECTURE
3.1 High-level Overview
We present our high-level design which eliminates the human /
business processes from the trust chain. We do this by designing the
FPGA to have control over its own reprogrammability, and allowing
it to determine when (or if) to allow updates to itself. This design
eliminates the need for a trusted party to maintain keys through a
business processes, which we argue has historically been shown to
be problematic.

The self-provisioning system is designed to allow the device
to be initially provisioned once by a system manufacturer into a
secure state, and thereafter prevent any future updates externally.
To do this, we leverage existing secure hardware systems used for
IP protection (e.g., secure boot) that controls the boot process of
the device. We configure the secure boot to only allow a single
configuration to be loaded into the FPGA. This configuration ef-
fectively locks out external access, preventing an adversary with
physical access from changing the hardware loaded into the FPGA.
Once in this state, not even the original manufacturer can di-
rectly change the configuration. The private keys used to sign
this configuration are generated on the FPGA during provisioning,
and stored in a secure storage that is only accessible to the FPGA
itself once booted. Because secure boot prevents loading arbitrary

Adversary

FPGA

Config Update
Policy

Self
provision

?

Desired config

Custom 
Secure 
Hardware

Figure 2: Secure Hardware on an FPGA with Self-Provisioning and
Secure Updates. As the keys are only held within the FPGA, and up-
dates are governed by hardware that implements an update policy,
an adversary cannot gain access to the key or re-program the FPGA.

bitstreams into the FPGA, nothing except the FPGA itself has access
to the secret keys needed to sign new bitstreams.

This self-provisioning process prevents any future updates from
being applied from an external source, but still allows the device
itself to authorize and apply updates.We note that a developer could
decide to disallow updates entirely by programming a configuration
that simply discarded its own key, and gain the benefits of silicon-
based secure hardware. However, should the developer wish to
leverage the reprogrammability of the FPGA, they can choose to
do so. If they do, the FPGA is configured with a subsystem for
authorizing and applying updates to itself. This subsystem can
implement security policies that are more powerful than simply
giving up a remote key to themanufacturer. For example, in addition
to a signed update from the manufacturer, the subsystem could
determine if it is currently in a certain unlocked or safe state, or
could require the user to authorize an update explicitly before it
signs the new hardware and reprogramms itself. This architecture
allows a manufacturer to commit to a security policy, and force
themselves (and would-be adversaries) to follow these.

3.2 Threat Model Overview
The adversary in our model is someone who desires to modify the
secure hardware implemented in the FPGA or to read back state of
the secure hardware implemented in the FPGA. Our work seeks to
solve the problem of trusting an external party with maintaining
keys that protect the FPGA configuration/state from this adversary.
This requires a distinction between trust in operational processes
and trust in functionality. In particular, we assume that the FPGA
manufacturer is trustworthy at the time the device is created and
provisioned, but that the manufacturer may become untrusthworty
at a later time, either by being compromised, legally compelled,
or having shifting business priorities. Thus, we assume that the
original functionality of the FPGA as initially provisioned contains
no backdoors or other malicious components, but that any long-
term keys maintained by the manufacturer can be compromised.



We ignore the threat of implementation bugs in the secure hard-
ware application, and side-channels on the FPGA that may inadver-
tently compromise the security of the system [24]. Though likely
to exist, we stress two points: first, existing secure hardware also
suffers implementation bugs and side channel attacks, and second,
our architecture is better able to handle these problems by allowing
comprehensive updates.

3.3 Motivating Example
As a motivating example of customized secure hardware, we will
focus on a secure co-processor with remote attestation. While there
are other applications that can be built using our design, secure
co-processors are a powerful example that enables a wide range of
security applications.

Intel Software Guard Extensions (SGX) [4, 5] is an extension
introduced by Intel to their CPUs which provides a Trusted Execu-
tion Environment (TEE), allowing developers to write software that
executes in a context isolated from the rest of the system, including
the operating system. SGX also supports remote attestation of the
software running in this TEE, but is designed to only allow Intel to
verify remote attestations. Others that use SGX for remote attesta-
tion must trust Intel to verify that a remote system is running the
code it claims to be running.

In our motivating example, say a company needs SGX-like ca-
pabilities, but wishes to use a different party (or even itself) as the
trusted source which provides the proof and verification needed in
the remote attestation process. This is not possible with Intel (or
any existing systems today), so this company would use or design a
secure co-processor targeted at an FPGA that provides a TEE with
remote attestation. When combined with our self-provisioning sys-
tem with updates, they can trust that an adversary will not be able
to alter their design and, by extension, trust that their TEE will
behave as they designed.

This company also wishes to be able to respond to vulnerabilities
and deploy patches to their secure co-processor. This comes from ex-
perience, as there are numerous examples of vulnerabilities discov-
ered in secure hardware after its release [11, 13, 14, 17, 33, 36, 37, 40].
With the ability to update, the company protects itself from being
locked into a vulnerable system or needing to recall physical hard-
ware. Updates, they determine, should be signed by them and should
also be verified by their users through the use of a PIN provided in
a separate (assumed secure) channel to the user.

In Section 7 we will discuss our implementation of this specific
co-processor system.

4 SELF-PROVISIONING
The goal of this work is to ensure thatwe can program an FPGAwith
a configuration implementing some custom secure hardware and
trust that a malicious party cannot modify it. On the surface, secure
boot would appear suitable for this. A secure boot system operates
by verifying a signature over a booted configuration against a public
key programmed into the system’s configuration, such as a secure
storage device. The trusted developer has the corresponding secret
key and is theoretically the only party that can generate a correctly
signed configuration. However, if this secret key is leaked to another
party, then this party can put any configuration into the device.

Our solution still makes use of the IP protection hardware used
by prior work [30, 39], but changes how the secure boot keys are
managed. The problems with the use of secure boot are not related
to how the hardware is implemented – the IP protection hardware
was never compromised. It is the business processes that are used
to protect the keys that we eliminate. Our self-provisioning system
achieves this by generating the secure boot key pair on the device
and storing the secret key in the device’s storage. The system uses
this key to sign a single initial configuration, which then becomes
the only configuration that can exist in the FPGA.

The self-provisioning system is simply a trusted piece of software
that is run on the device itself to generate keys which will be stored
on the device and never exposed.

First, the FPGA is empty with no secure boot set up. The self-
provisioner configuration is loaded and executes a series of steps,
as summarized below:

(1) Generate a keypair for the secure boot system.
(2) Sign the initial FPGA configuration with the generated secret

key.
(3) Store the secret key in secure storage.
(4) Program the public key to the secure boot system on the

device.

At this point, the FPGA’s secure boot has been set up and the
keys are stored in secure storage on the device. Only the single
configuration, determined at provisioning time is allowed to be
loaded as it is the only one which has been signed by the secure
boot keys. A power cycle of the device will then cause this initial
configuration to be loaded onto the FPGA. In order for a different
configuration to be loaded, it must be signed by the secret that only
exists on the device and must be authorized by the security policy
of the update mechanism (discussed in the next subsection) of this
initial configuration.

The initial configuration could be the desired secure hardware
application itself (e.g., the secure co-processor with remote attesta-
tion), if known at provisioning time. If unknown, or if more flexi-
bility is desired, an option would be to load an initial configuration
that does not have any secure hardware application, but can have
an update policy that suits the protection desired until loaded with
the initial application (e.g., a one-time use key). The update system
would then be used to load the actual secure hardware application
onto the FPGA. Note that this will result in overwriting the up-
date system’s policy with that of the secure hardware application’s
policy.

5 POLICY CONTROLLED SECURE UPDATES
The secure update system provides the second component of our
platform that allows for applications to make use of the FPGA’s
reprogrammability. As described in the previous section, once self-
provisioning is complete, only a single configuration can exist in
the FPGA. However, since the generated secret is accessible to the
FPGA, the FPGA can authorize a new configuration. Therefore,
to allow for updates, a subsystem needs to be implemented by
developers that will implement a security policy. This subsystem
will receive updates andwill verify that they conform to the selected
security policy before using the secret key to authorize an update.



The update subsystem will enforce a security policy, but this
policy must be selected and implemented by the developer of the
application. Examples of security policies are:
• Update signed by a trusted developer.
• Correct PIN input by user at update time.
• User PIN and trusted signature required.
• No updates allowed.

This list of policies is not exhaustive, but is representative of
potential policies. What this enables is choice for the secure hard-
ware developer. They could trust their own processes (to safeguard
keys), or, better yet, safeguard against leaks by utilizing a policy
which requires signing and a PIN, and perhaps extend the policy
to allow a new key for signing updates to be regenerated through
some local action.

To support this, we require the developer to implement the en-
forcement of the chosen policy as part their application. This is
because these implementations depend heavily on the capabilities
of the device and developers will have their own requirements, such
as signature algorithms or input devices, that cannot be prescribed
for all use cases. We give an example implementation that is not
portable outside of our device used for implementation in the next
section, but can be used as an example to build other update systems
off of, even when implementing a different security policy.

In general, the secure update system is responsible for perform-
ing two tasks, irrespective of the implementation or chosen policy.
The first task is to receive updates and enforce that these updates
adhere to the security policy before allowing them to be authorized
(such as verifying a signature or user PIN). The second task is to
use the device-only secret key to sign updates that pass verification
and program the signed update to the device. Therefore, an update
subsystem must perform these steps:

(1) Receive an update.
(2) Verify that the update conforms to the update security policy.
(3) Use the secret key to sign the update.
(4) Overwrite the existing FPGA configuration such that the

update will execute in future power cycles of the device.
As the update system is implemented as part of the initial con-

figuration of the FPGA that is authorized by the self-provisioning
system, there is no other way to change the configuration. There-
fore, the configuration is secure from being overwritten except by
another update that conforms to the chosen policy. This requires
that the developer implements the update policy correctly, as there
are several attacks, such as man-in-the-middle, downgrade and roll-
back attacks, that can compromise a security policy that performs
only simple authentication. Therefore, update best-practices should
be followed, such as the use of sequence numbers and signatures,
when implementing a security policy. This is further discussed
in the next section, where we discuss which attacks that the up-
date policy we implemented defends against and which it is still
vulnerable to.

6 IMPLEMENTATION
To demonstrate our platform, we implemented a self-provisioning
system and an example application that includes an update subsys-
tem. Our example application is a secure coprocessor that offers sim-
ilar features to SGX, and is described further in the next section. In

this section, we present how we implemented the self-provisioning
system and the update subsystem, which any implementation of
our platform will need to provide. We also describe the implemen-
tation of a secure storage capability in our device, as both the
self-provisioning system and the update system require a secure
storage system. We implemented our demonstration application
using the Xilinx ZCU102 Evaluation Kit. This system combines a
quad-core ARM CPU and a Xilinx FPGA and includes all of the
needed IP protection hardware that is required for our platform.

6.1 Self-Provisioning
In an ideal system, the FPGAwould have direct internal control over
the IP protection hardware, with all other peripherals restricted
from accessing these systems. However, we were limited by the
device we used for our implementation, in that the FPGA does not
have direct access to most peripherals in the device’s interconnect
design. Instead, the coupled ARM CPU is the master of the system,
meaning that our provisioning system needed to be run as a soft-
ware program rather than as a system in the FPGA. This imposes
some increased risk of exposure of generated keys, as the ARM
system memory is more accessible than the FPGA, but since the
self-provisioning system is expected to execute in a trusted facility,
this increased risk can be mitigated.

The self-provisioning system that we implemented performs the
tasks outlined in the previous section. The provisioner (e.g., the
device manufacturer or distributor) will load the self-provisioner
onto the device’s persistent storage (in our case, an SD card) along
with the initial FPGA configuration to be signed. We, acting as
the provisioner, have generated the self-provisioning operating
system using Xilinx’s proprietary tools such that when the device
is powered on, the provisioner is executed.

Once booted, the provisioner loads a simple Ubuntu filesystem
that executes a single script. This script generates an RSA-4096
keypair for the secure boot system (the ZCU102 secure boot hard-
ware uses 4096-bit RSA keys) and stores it securely. As the only
persistent storage available on our device is the SD card, we also
leverage additional IP protection hardware that is used for FPGA
encryption. This hardware utilizes a small amount of secure storage
(battery-backed RAM (BBRAM)) that cannot be read once it is pro-
grammed. The self-provisioning system generates an encryption
key, programs the encryption key to the BBRAM, and uses the
encryption key to encrypt the generated secure boot keypair. On
each future boot, the encryption hardware can decrypt the secret
key if needed without it being decryptable outside of the device.

Once the keypair has been generated and the secure storage
initialized with the encryption hardware, the self-provisioner uses
the keypair and Xilinx’s tools to generate a signed boot image
containing the initial FPGA configuration that is in the proprietary
format used by our device. The output file is then placed onto the SD
card so that it will be loaded on the next power cycle of the device.
Finally, the self-provisioner will program the generated public key
into the IP protection secure boot system of the device, locking the
device to only being able to run the boot image that was generated,
which contains the initial FPGA configuration.

At this point, the self-provisioner is finished and reboots the
device. On the next boot, the signed FPGA configuration will be



running and will be the only hardware that can be loaded into the
FPGA, as the secure boot system will not let any other configura-
tions that are not signed by the key into the FPGA, and no other
such configurations can exist, since the secure boot key only exists
on the device itself.

6.2 Update System
As required by our platform’s architecture, the self-provisioning
system locks down our device so that only a single FPGA config-
uration can exist in the FPGA. To support updates, our platform
requires that developers include an update subsystem that will
implement a security policy, but we require that the developers pro-
vide their own implementations. This is because developers need
to make application-specific and device-specific decisions about
how to implement the system. In this section, we describe the im-
plementation we used for our application that demonstrates what
these application-specific and device-specific can be.

The update system that we provided implements the required
functionality of our platform. We selected a security policy that
requires a trusted signature over the update and the input of a
user’s PIN before the update will be accepted. The verification of
the security policy is performed by the FPGA, but because the
FPGA does not have direct access to the SD card on our device, and
because the boot image format that the update must be converted to
is also proprietary, the actual generation of the boot image cannot
be done in the FPGA. Instead, when the FPGA authorizes an update,
the device will reboot into a simple update operating system that is
similar to the self-provisioning system previously described. This
means that our update operating system is implemented partially in
the authorized FPGA configuration, but also in the update operating
system and a trusted bootloader.

When an update is authorized, the update subsystem will store
a flag into the secure storage that is only accessible to the FPGA.
Upon reboot, the bootloader will check for the existence of this flag
and boot into a different operating system. This update system in
the FPGA will then release the private key to the operating system
after the trusted bootloader indicates that it has booted. The update
operating system’s only task is to use the secret key and Xilinx’s
tools to generate a compatible boot image that contains the updated
FPGA configuration. Once it has generated this boot image and
placed it into persistent storage, the operating system will reboot
the device into normal operation.

As can be seen, our device has several limitations that require
special implementation considerations, specifically the fact that the
FPGA does not have direct access to most system peripherals. In
addition, for the enforcement of our security policy, we require user
PINs to be six digits in length andwe require all updates to be signed
using the ED25519 signature algorithm. Other update systems may
choose to use different requirements. We also make use of the
MicroBlaze soft CPU to implement the update system, whereas
other implementations may choose to use other methods, such as
pure Verilog or a different CPU. Because of these considerations,
we do not provide a single implementation, as any implementation
depends upon the capabilities of the device, the requirements of
the application, and the exact update security policy that is chosen.

Server 
endpoint

Enclave 
driver

Isolated Execution 
Environment

ECDSA
Enclave
Loader /
Verifier

ARM CPU

FPGA Fabric

Remote client

Remote 
Attestation

Enclave 
libraries

Secure 
RNG config

Enclave
Logic

Figure 3: Secure Coprocessor and Remote Attestation Design. Here
we run the FPGA as a coprocessor and are able to enforce isolation
and perform remote attestation. A remote attestation client uploads
a program to an untrusted server. The program is launched in a Iso-
lated Execution Environment in the FPGA by enclave logic, which
also signs the program code and performs a key exchange. The dri-
ver communicates with the program in the enclave over a shared
buffer and relays data to the client.

6.3 Secure Storage
As mentioned in the previous two sections, the self-provisioning
system and the update system both need to store secrets that are
only accessible to the FPGA. However, our device does not provide
such a capability directly, nor does it allow for the FPGA to directly
write to the SD card. To solve this problem, we leverage the built-in
encryption hardware, as mentioned previously, in the form of an
AES accelerator that is backed by a secure encryption key storage
in BBRAM. The self-provisioning system initializes this accelerator
with a random key that never is stored except in the BBRAM and
uses the accelerator to encrypt data. Using the accelerator, we can
achieve a secure storage that prevents data from decrypted outside
of the device.

However, the FPGA cannot directly pass data to the AES accel-
erator. Instead, we require that a proxy be run in the CPU of our
device that passes data between the FPGA and the AES accelerator,
and stores the encrypted data onto the SD card. To further protect
the data, we have also implemented a corresponding subsystem in
our application that interacts with this agent, which encrypts any
arbitrary data generated by our application using an FPGA-only
key that is stored in a dedicated eFuse array only accessible to the
FPGA. This ensures that when passing data to the CPU agent after
boot that no cleartext data is available in the CPU’s memory.

7 A CUSTOMIZED SECURE COPROCESSOR
WITH REMOTE ATTESTATION

In Section 3 we described a motivating example where a company
wishes to have a secure co-processor with remote attestation where
the root of trust is flexible (i.e., not the manufacturer, as in SGX).
In this section we elaborate on the hardware design, the software
development kit to develop software applications, and two example
software applications (password manager and contact matching)
that were built with our software development kit.



7.1 Hardware Design
7.1.1 Isolated Execution Environment. The code that can be pro-
vided to the secure co-processor to run in an isolated manner is
in the form of a partial configuration bitstream. There are two op-
tions we support for the internal architecture of this hardware. The
surrounding logic is identical in both cases, but it is the contents of
the configuration bitstream which differ.

Option 1: Software Enclave.
To provide a software environment for software isolation and

remote attestation, we implemented a MicroBlaze [8] soft CPU
inside the FPGA as part of the secure hardware application. Any
code that executes in this CPU is isolated from the untrusted oper-
ating system and can be trusted to execute once loaded. Developers
provide their code to the SDK, which will then generate the needed
logic to execute this code in a MicroBlaze CPU.

Option 2: Hardware Enclave.
Alternatively, developers can directly provide hardware, so long

as it is able to perform the interaction with the untrusted soft-
ware. This does not imply the developer has to develop hardware.
They can develop logic directly for the FPGA in any manner that
they choose, including by synthesizing the developer’s software (C
code) into a compatible bitstream using high-level synthesis, as is
described in Section 7.2.

The developer can make the decision between having their en-
clave’s code (provided as C code) synthesized to hardware or exe-
cuted on a soft CPU based on the complexity of the application –
more complex applications are more difficult to synthesize to hard-
ware, but an application synthesized to hardware will have better
performance. The SDK will generate a resulting partial bitstream
based on the developer’s choice and the synthesis results that either
includes the application directly implemented as FPGA logic, or a
soft CPU in the FPGA logic that executes their application’s code.
The SDK also generates an untrusted program (i.e., the “Enclave
driver”) that runs on the device’s (untrusted) CPU to interact with
the enclave program via a memory buffer in the FPGA.

7.1.2 Enclave Code Loader. In order to securely program this co-
processor, we utilize custom logic that ensures that when any
trusted code (i.e., a trusted “enclave" program, similar to SGX) is
loaded, a hash of this program is taken and a signature verification
are performed. As illustrated in Figure 3, the code of the application
is provided to the logic in the form of a partial bitstream, which
specifies a configuration which will reprogram only part of the
FPGA. The enclave logic will use the internal configuration access
port (ICAP) to program the partial bitstream (the enclave program)
into the area of the FPGA reserved for executing the secure enclave,
leaving the rest of the FPGA (e.g., enclave logic) untouched.

In addition, the enclave logic reads an ECDSA private key from
the secure storage, and uses it to sign the hash of the bitstream and
a message from the enclave during the remote attestation process.
As shown in Figure 3, a remote client can upload a program to
services running in the untrusted operating system, which will
then pass the program to the enclave logic.

7.1.3 Remote Attestation. The attestation protocol implemented by
our secure hardware and companion software is shown in Figure 4.
In this protocol, a remote verifier uploads a program (in the form

Remote Verifier Trusted Enclave Logic

Sig(enclave, SKv ), enclave

Program Launch Success

Sig(PKv |nonce, SKv ), PKv

Sig(PKenclave |Hash(enclave), SKel ), PKenclave |Hash(enclave)

Figure 4: Remote Attestation Sequence: In the remote attestation
protocol, the remote verifier uploads a program (enclave) signed by
its private key (SKv ). The enclave launches the program and noti-
fies the verifier, which then requests an attestation by sending its
signed public key (PKv ). The enclave logic uses this key to derive
a shared secret for the enclave and responds with a signature of an
ephemeral public key for the enclave (PKenclave ) and the hash of
the enclave, signed by a long-term key for the enclave logic (SKel ).

of a partial bitsream) signed by its Ed25519 private key (SKv ) [16]).
The program will be launched by the enclave logic, and the verifier
will be notified upon completion. The verifier will then request an
attestation by uploading its signed public key (PKv ). The enclave
logic then generates an ephemeral key pair for this attestation to
establish a shared secret for the enclave (PKenclave , SKenclave ),
and signs PKenclave and the hash of the enclave program with its
long-term attestation key (PKel , SKel ). The enclave sends these to
the verifier, along with a certificate chain configured at provision
time by the root of trust for this device. Using this certificate, the
verifier then verifies the signature and checks that the hash matches
the expected hash of the uploaded enclave program. If so, the verifier
can calculate a shared secret using PKenclave and SKv , just as the
enclave logic calculates a shared secret using PKv and SKenclave .
Using this shared secret known only to the verifier and the isolated
enclave, a secure channel can be established.

To generate secure ephemeral keys during this process, we have
included a cryptographic random number generator within the
trusted hardware of the FPGA, as implemented by the Cryptech
OpenHSM project [34]. The module draws randomness from both
the LSB of A/D conversion noise as well as a ring of digital oscil-
lators implemented as a set of adders with the carry out inverted
and fed back as carry in. This entropy is collected and hashed using
SHA512 to whiten it. The resulting digest is used to seed a ChaCha
stream cipher’s key and IV which is used as a PRNG to provide
random numbers to the enclave logic to securely generate keypairs.

7.2 SDK
In addition to designing the hardware of our software isolation
system, we have also designed a software development kit to make
it easier to develop software applications that run in the system.
Figure 5 shows the major components of the SDK. A developer
creates untrusted code that runs on the ARM CPU of our system in
the untrusted operating system (arm.c), code that implements the
trusted functions that are run in the isolated enclave (enclave.c),



arm.c

User created

SDK

enclave.c

interface.json

ARM binary

libenc.c

libenc.h

Enclave library

HLS 
Generated 
HW config

HW encSW Enc

HW config w/ 
MicroBlaze

and executable

Selected Option

Figure 5: SDK Development Flow

and a description of the API the application wishes to use to com-
municate between the trusted and untrusted code (interface.json).
This interface describes the inputs and outputs of the trusted code
as well as the function signatures of the specific methods. The de-
veloper also has access to the enclave library (libenc.h, libenc.c)
that provides functions to launch an enclave, which is done by
interacting with the enclave logic.

The developer provides their code to the SDK. For a software en-
clave, the SDK will output a partial configuration bitstream (which
was pre-built) that contains a MicroBlaze [8] soft CPU (i.e., a proces-
sor implemented in the FPGA logic). The SDKwill cross-compile the
enclave code and add the memory to the configuration bitstream.
For a hardware enclave, the SDK will utilize the Vivado [12] high-
level sythesis tool, which generates Verilog from C code. Then it
will synthesize that design and generate a partial configuration
bitstream.

In both cases, the SDK will use the API interface definition to
generate communication code between the enclave and the ARM
CPU using the dedicated shared buffer. Also, in both cases, the SDK
will cross-compile the application code for the ARM instruction set.
The (untrusted) ARM binary’s will load the trusted code into the
enclave using the enclave library.

7.3 Password Manager Application
As an illustration of running isolated software in this secure hard-
ware module, we implemented a password manager that encrypts
stored credentials under a master password. Passwords are en-
crypted and decrypted in an enclave with only the encrypted data
being stored in persistent storage. To access a password, the enclave
must be provided the encrypted data and a master password. The
enclave then derives a decryption key using this password and a
device-only key that can only be accessed from the enclave.

To use the manager, a user provides their master password to
a client program which interacts with the enclave. The user then
has the option to enter information for passwords, usernames and
identifiers (e.g., a website). This information is given to the enclave
to encrypt, and passed back to the client application to store in
persistent storage. Retrieving data is achieved by interacting with
the client program and requesting data by its identifier, which will

cause the enclave to decrypt it and return it to the client. This
password manager is similar in design to an example application
SGX provided by Intel [6].

Our implementation cannot remove all possible attack vectors,
as the password manager must still function to provide data in
plaintext in order for it to be useful for users to interact with un-
modified programs. However, we can force any attacks to be online,
in the sense that the adversary must query the password manager in
the trusted enclave, rather than simply be able to make copies and
reveal the entire database. This is because the encrypted password
database can only be decrypted using the user’s master password
and the FPGA’s device-only key. Even if the database is exported
and the user’s password is compromised, the data cannot be de-
crypted without interacting with the enclave running on the device
on which it was first encrypted. We present a performance analysis
of user interaction with the password manager in Section 8.

7.4 Contact Matching Application
As a second example to show how our isolated environment can
execute code that has been synthesized into FPGA logic using
high-level synthesis, we have developed a second application. This
application emulates the SGX-enabled contact discovery service
operated by Signal [27], except implemented using C++ and syn-
thesized into hardware using our SDK. This application’s purpose
is to receive an encrypted list of contacts (i.e., phone numbers)
from a user and determine the intersection of this with a database
of all registered users of the service. The solution used by Signal
is designed to prevent the operators of the service from learning
the contacts in the uploaded list while still allowing for users to
determine the intersection with the total database. By executing in
an SGX enclave, Signal is able to conceal which contacts are found
to match, and return an encrypted result to the user. Our contact
matching application provides similar functionality, but executes
its code in FPGA logic that has been synthesized using our SDK.
We present the performance of this application in Section 8.

8 EVALUATION
As an example secure hardware application, we built a secure co-
processor with remote attestations. Here, we we evaluate the perfor-
mance of example applications for this secure co-processor along
with associated metrics about how long it takes to load and perform
a remote attestation. For all of our applications we continue to use
the ZCU102 Evaluation Kit running Ubuntu 15.10.

8.1 Software Enclave Performance
Benchmarks

To test the performance impact of executing code on a Microblaze
CPU, we designed several microbenchmarks to test memory and
computation performance, along with end-to-end performance.

Software Enclave SHA512 Performance. We created a program
that hashes a buffer of randomdata using SHA512 in both an enclave
and directly on the main CPU. As the enclave executes on the
embedded Microblaze CPU, we expect the performance to be much
worse, and this experiment is intended to determine if using our
SDK to create enclave programs imposes additional overhead.



The performance of the Microblaze enclave is approximately
20x worse than the reference implementation on the ARM CPU.
However, both implementations scale linearly with the size of the
data being hashed. There does not appear to be any overhead caused
by using our SDK to develop a program for the enclave, and it
appears that the execution performance of the Microblaze CPU is
the main performance bottleneck, as expected. We stress that while
our system has significantly less performance than that of pure
hardware implementations, very few secure applications require
the full performance of the main processor, but instead emphasize
security, isolation, and ease of implementation over raw throughput.

Password Manager Performance. Illustrating the point that the
performance impact of our implementation commonly would im-
pact a relatively small fraction of the overall perceived performance,
we measured the time to add and retrieve passwords from the pass-
word manager application described in Section 7.3, for passwords
of up to 100 characters in length. As seen in Figure 7, both with
and without running in an enclave results in an average 202ms
latency (with less than 0.3 difference in the worst case). Likewise,
for reasonable passwords up to 100 characters, the latency for de-
crypting a password from the manager is roughly 120ms for both
implementations, well within the realm of usability (for passwords
much larger than that, the impact of the performance difference
does become noticeable as more time is spent in the enclave).

Enclave Memory Access Performance. To measure the memory
access performance of an enclave, the enclave is simply tasked with
copying an input buffer to an output buffer, and the performance
is compared to the ARM CPU’s performance at the same task. We
measured an overhead for Microblaze access times ranging linearly
from 100x for small chunks of data (0-250 bytes) to 12x for larger
chunks (2 Kbytes and larger).

8.2 Hardware Enclave Performance
To show that our SDK can also achieve acceptable performance for
large scale processing, particularly through high-level synthesis
(compiling C code directly to hardware), we developed a second
application that performs a similar service as the contact discovery
service operated by Signal. As discussed previously, the purpose of
our application is to receive a list of phone numbers from a user
and determine the intersection with a larger database, and then
return the result to the user. We compared the performance of this
application to a software-only implementation that used the same
contact list and database. As shown in Figure 6, the synthesized
hardware version achieves a throughout of up to 3x compared to
the software solution. We used contact list sizes of 128 contacts,
represented as SHA512 hashses, and database sizes ranging from
800 contacts to 819,200 contacts, also represented as SHA512 hashes.

8.3 Enclave Logic Microbenchmarks
Enclave Loading Performance. Our final benchmark measures the

throughput of loading enclave program binaries of various sizes.
After testing using binaries ranging in size from 20 KB to 1 MB, the
throughput remained constant at 35 KB/s.

Remote Attestation Performance. To measure the end-to-end per-
formance of performing a remote attestation, we implemented a

0 200000 400000 600000 800000
Number of Contacts in Database

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Co
nt

ac
t M

at
ch

 E
la

ps
ed

 T
im

e 
(s

)

SW Reference Contact Match
HW Contact Match

Figure 6: Contact Matcher Performance Performance of matching
a contact list against a larger database in a software-only imple-
mentation and an HLS-synthesized version. The hardware version
achieves an average of approximately 3x compared to the software
version.

private set intersection calculation program that calculates the in-
tersection of two sets of integers in an enclave, with one set being
uploaded in encrypted form using the shared secret negotiated
by the remote attestation protocol, and the other provided to the
enclave by the local host, similar the contact discovery feature used
by Signal [27]. In each attestation, a fixed amount of data is passed
in each message, which is the public key of the verifier in one mes-
sage, and then the signed public key and hash of the enclave in
the response. This experiment measures the average time to pass
these messages, for the enclave logic to generate the keys and sign
the message, and the time for the client to verify the response and
calculate the shared secret. After performing 1000 trials in ideal
laboratory network conditions between a verifier and the device
running the trusted enclave logic, the average remote attestation
time was 107.2 ms with a standard deviation of 8.604 ms.

9 CONCLUSIONS AND FUTUREWORK
In this paper we introduced a new mechanism which allows FP-
GAs to be used to implement customized secure hardware with-
out depending on human / business processes to maintain the
secrecy of keys used to protect the FPGAs configuration process.
We introduced the concept of self-provisioning and a secure update
process which allows for policies which govern whether an up-
date is allowed or not. As a proof of concept, we implemented the
framework on the Xilinx Zynq Ultrascale+ FPGA and built a secure
co-processor with remote attestation that has a flexible root of trust.
Going forward, a key direction we intend to pursue is to further
strengthen the threat model and seek to more completely decouple
the underlying mechanisms from the secure hardware applications
– that is, modify the design such that the framework can provide
run-time support for loading secure hardware applications, rather
than the current boot-time support.



0 20 40 60 80 100
Password size (characters)

0.2000

0.2005

0.2010

0.2015

0.2020

0.2025

0.2030

0.2035

0.2040

Pa
ss

wo
rd

 W
rit

e 
Ti

m
e 

(s
)

Enclave Password Write
Reference Password Write

Figure 7: Password Manager Write Performance Time spent adding
passwords to the password manager when protected by an enclave
andwhen using a reference implementation running completely on
the ARM CPU without an enclave.

Acknowledgements. We thank the anonymous reviewers for their
input on this paper. This research was supported in part by the
National Science Foundation under grants 1406192 (SaTC) and
1700527 (SDI-CSCS).

REFERENCES
[1] Amazon EC2 F1 Instances: Run Customizable FPGAs in the AWS Cloud. https:

//aws.amazon.com/ec2/instance-types/f1/.
[2] Ces: Intel goes for self-driving cars. https://www.electronicsweekly.com/news/

design/ces-intel-goes-self-driving-cars-2017-01/.
[3] FBI Apple encryption dispute. https://en.wikipedia.org/wiki/FBIâĂŞApple_

encryption_dispute.
[4] Intel Software Guard Extensions. https://software.intel.com/en-us/sgx.
[5] Intel Software Guard Extensions (SGX): A Researcher’s Primer.

https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/
2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/.

[6] Introducing the Intel Software Guard Extensions Tu-
torial Series. https://software.intel.com/en-us/articles/
introducing-the-intel-software-guard-extensions-tutorial-series.

[7] iOS Security - iOS 11. https://www.apple.com/business/docs/iOS_Security_Guide.
pdf.

[8] MicroBlaze Soft Procesor Core. https://www.xilinx.com/products/design-tools/
microblaze.html.

[9] Microsemi: Security. https://www.microsemi.com/product-directory/fpga-soc/
1738-security.

[10] Project catapult. https://www.microsoft.com/en-us/research/project/
project-catapult/.

[11] Secure Golden Key Boot. https://rol.im/securegoldenkeyboot/.
[12] Vivado user guide. http://www.xilinx.com/support/documentation/sw_manuals/

xilinx2014_1/ug902-vivado-high-level-synthesis.pdf.
[13] CVE-2016-3287. Available from MITRE, CVE-ID CVE-2016-3287, July 2016.
[14] CVE-2016-3320. Available from MITRE, CVE-ID CVE-2016-3320, Aug. 2016.
[15] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted

cloud with haven. ACM Trans. Comput. Syst., 33(3), Aug 2015.
[16] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-speed high-

security signatures. Journal of Cryptographic Engineering, pages 1–13, 2012.
[17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi.

Software grand exposure: SGX cache attacks are practical. In 11th USENIX
Workshop on Offensive Technologies (WOOT 17), Vancouver, BC, 2017. USENIX

Association.
[18] A. M. Caulfield et al. A cloud-scale acceleration architecture. In IEEE/ACM

International Symposium on Microarchitecture (MICRO), Oct 2016.
[19] P. Chodowiec and K. Gaj. Implementation of the twofish cipher using FPGA

devices. Technical report, Electrical and Computer Engineering, George Mason
University, 1999.

[20] V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal risc extensions for
isolated execution. IACR Cryptology ePrint Archive, 2015:564, 2015.

[21] A. Dandalis, V. K. Prasanna, and J. D. Rolim. A Comparative Study of Performance
of AES Final Candidates Using FPGAs. In Cryptographic Hardware and Embedded
Systems (CHES), 2000.

[22] A. J. Elbirt and C. Paar. An FPGA Implementation and Performance Evaluation
of the Serpent Block Cipher. In Proc ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA), 2000.

[23] G. Gogniat, T. Wolf, W. Burleson, J.-P. Diguet, L. Bossuet, and R. Vaslin. Re-
configurable hardware for high-security/high-performance embedded systems:
the safes perspective. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 16(2):144–155, 2008.

[24] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin, T. Nguyen,
and C. Irvine. Moats and drawbridges: An isolation primitive for reconfigurable
hardware based systems. In IEEE Security and Privacy, 2007.

[25] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative
execution. CoRR, abs/1801.01203, 2018.

[26] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. R. Pietzuch, and E. G. Sirer. Teechain:
Scalable blockchain payments using trusted execution environments. CoRR,
abs/1707.05454, 2017.

[27] M. Marlinspike. Technology preview: Private contact discovery for signal. https:
//signal.org/blog/private-contact-discovery/, 2017.

[28] J. T. McHenry, P. W. Dowd, F. A. Pellegrino, T. M. Carrozzi, and W. B. Cocks.
An FPGA-based coprocessor for ATM firewalls. In Proc IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM)), 1997.

[29] S. McMillan and C. Patterson. Jbits implementations of the advanced encryption
standard (rijndael). In International Conference on Field Programmable Logic and
Applications, pages 162–171. Springer, 2001.

[30] E. Peterson. XAPP 1323: Developing Tamper-Resistant Designs with Zynq Ultra-
Scale+ Devices. https://www.xilinx.com/support/documentation/application_
notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf, Aug 2018.

[31] A. Putnam et al. A reconfigurable fabric for accelerating large-scale datacenter
services. In Proc. Annual International Symposium on Computer Architecuture
(ISCA), 2014.

[32] M. Riaz and H. M. Heys. The fpga implementation of the rc6 and cast-256 en-
cryption algorithms. In Electrical and Computer Engineering, 1999 IEEE Canadian
Conference on, volume 1, pages 367–372. IEEE, 1999.

[33] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware guard
extension: Using SGX to conceal cache attacks. CoRR, abs/1702.08719, 2017.

[34] P. Selkirk and J. StrÃűmbergson. https://trac.cryptech.is/browser/core/rng/trng.
[35] I. Sourdis and D. Pnevmatikatos. Fast, large-scale string match for a 10gbps

fpga-based network intrusion detection system. In Field Programmable Logic and
Application, 2003.

[36] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza. AsyncShock: Exploiting
synchronisation bugs in Intel SGX enclaves. In European Symposium on Research
in Computer Security, pages 440–457. Springer, 2016.

[37] S. Weiser and M. Werner. Sgxio: Generic trusted i/o path for intel sgx. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, CODASPY ’17, pages 261–268, New York, NY, USA, 2017. ACM.

[38] Wikipedia. List of data breaches. https://en.wikipedia.org/wiki/List_of_data_
breaches.

[39] K. Wilkinson. XAPP 1267: Using Encryption and Authentication to Secure
an UltraScale/UltraScale+ FPGA Bitstream. https://www.xilinx.com/support/
documentation/application_notes/xapp1267-encryp-efuse-program.pdf, Aug
2018.

[40] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 640–656. IEEE, 2015.

[41] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An authenti-
cated data feed for smart contracts. In Proc. ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.electronicsweekly.com/news/design/ces-intel-goes-self-driving-cars-2017-01/
https://www.electronicsweekly.com/news/design/ces-intel-goes-self-driving-cars-2017-01/
https://en.wikipedia.org/wiki/FBI–Apple_encryption_dispute
https://en.wikipedia.org/wiki/FBI–Apple_encryption_dispute
https://software.intel.com/en-us/sgx
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2015/january/intel-software-guard-extensions-sgx-a-researchers-primer/
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://software.intel.com/en-us/articles/introducing-the-intel-software-guard-extensions-tutorial-series
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.xilinx.com/products/design-tools/microblaze.html
https://www.microsemi.com/product-directory/fpga-soc/1738-security
https://www.microsemi.com/product-directory/fpga-soc/1738-security
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://rol.im/securegoldenkeyboot/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_1/ug902-vivado-high-level-synthesis.pdf
https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1323-zynq-usp-tamper-resistant-designs.pdf
https://trac.cryptech.is/browser/core/rng/trng
https://en.wikipedia.org/wiki/List_of_data_breaches
https://en.wikipedia.org/wiki/List_of_data_breaches
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1267-encryp-efuse-program.pdf

	Abstract
	1 Introduction
	2 Past Attempts (and why process trust matters)
	2.1 Security Functions on an FPGA
	2.2 Security Functions with Bitstream Encryption

	3 System Architecture
	3.1 High-level Overview
	3.2 Threat Model Overview
	3.3 Motivating Example

	4 Self-Provisioning
	5 Policy Controlled Secure Updates
	6 Implementation
	6.1 Self-Provisioning
	6.2 Update System
	6.3 Secure Storage

	7 A Customized Secure Coprocessor with Remote Attestation
	7.1 Hardware Design
	7.2 SDK
	7.3 Password Manager Application
	7.4 Contact Matching Application

	8 Evaluation
	8.1 Software Enclave Performance Benchmarks
	8.2 Hardware Enclave Performance
	8.3 Enclave Logic Microbenchmarks

	9 Conclusions and Future Work
	References

