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ABSTRACT
Refraction Networking (formerly known as “Decoy Routing”) has
emerged as a promising next-generation approach for circumvent-
ing Internet censorship. Rather than trying to hide individual cir-
cumvention proxy servers from censors, proxy functionality is
implemented in the core of the network, at cooperating ISPs in
friendly countries. Any connection that traverses these ISPs could
be a conduit for the free flow of information, so censors cannot eas-
ily block access without also blocking many legitimate sites. While
one Refraction scheme, TapDance, has recently been deployed at
ISP-scale, it suffers from several problems: a limited number of
“decoy” sites in realistic deployments, high technical complexity,
and undesirable tradeoffs between performance and observability
by the censor. These challenges may impede broader deployment
and ultimately allow censors to block such techniques.

We present Conjure, an improved Refraction Networking ap-
proach that overcomes these limitations by leveraging unused ad-
dress space at deploying ISPs. Instead of using real websites as the
decoy destinations for proxy connections, our scheme connects
to IP addresses where no web server exists leveraging proxy func-
tionality from the core of the network. These phantom hosts are
difficult for a censor to distinguish from real ones, but can be used
by clients as proxies. We define the Conjure protocol, analyze its
security, and evaluate a prototype using an ISP testbed. Our results
suggest that Conjure can be harder to block than TapDance, is sim-
pler to maintain and deploy, and offers substantially better network
performance.

CCS CONCEPTS
• Networks → Network security; • Social and professional top-
ics→ Censorship.
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Figure 1: Conjure Overview—An ISP deploys a Conjure station, which
sees a passive tap of passing traffic. Following a steganographic registration
process, a client can connect to an unused IP address in the ISP’s AS, and
the station will inject packets to communicate with the client as if there
were a proxy server at that address.

1 INTRODUCTION
Over half of Internet users globally now live in countries that block
political, social, or religious content online [19]. Meanwhile, many
popular tools and techniques for circumventing such censorship
become ineffective, because censors have evolved newways to block
them [14, 35] or infrastructure they rely on has become unavailable.

For example, domain fronting [17] was a popular circumvention
strategy used by meek (in Tor), as well as by the Signal secure
messaging app to get around censorship in countries where it was
blocked [36, 43]. But in May 2018, Google and Amazon made both
technical and policy changes to their cloud infrastructures that
removed support for domain fronting [33]. While meek continues
to use other cloud providers that (for now) continue to allow domain
fronting, Signal abandoned the strategy altogether [37]. There is
an urgent need for new, more robust approaches to circumvention.

A family of techniques called Refraction Networking [3, 13, 26,
29, 40, 59, 60], formerly known as Decoy Routing, has made promis-
ing steps towards that goal. These techniques operate in the net-
work’s core, at cooperating Internet Service Providers (ISPs) outside
censoring countries [45]. Clients access circumvention services by
connecting to a “decoy site”—any uncensored website for which
the connection travels over a participating ISP. Upon recognizing a
steganographic signal from the client, the ISP modifies the connec-
tion response to return censored content requested by the user. Cen-
sors cannot easily block access without also blocking legitimate con-
nections to the decoy sites—collateral damage that may be prohib-
itive for censors if Refraction Networking is widely deployed [48].

However, deploying such schemes is more difficult than with
most edge-based circumvention techniques, since ISPs must be
convinced to operate the systems in their production networks.
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To date, only TapDance [59], one of six Refraction Networking
proposals, has been deployed at ISP scale [20].

TapDance was designed for ease of deployment. Instead of in-line
network devices required by earlier schemes, it calls for only a pas-
sive tap. This “on-the-side” approach, though much friendlier from
an ISP’s perspective, leads to major challenges when interposing
in an ongoing client-to-decoy connection:

• Implementation is complex and error-prone, requiring kernel
patches or a custom TCP stack.

• To avoid detection, the system must carefully mimic subtle
features of each decoy’s TCP and TLS behavior.

• The architecture cannot resist active probing attacks, where
the censor sends specially crafted packets to determinewhether
a suspected connection is using TapDance.

• Interactions with the decoy’s network stack limit the length
and duration of each connection, forcing TapDance to multi-
plex long-lived proxy connections over many shorter decoy
connections. This adds overhead and creates a traffic pattern
that is challenging to conceal.

Conjure In this paper, we present Conjure, a Refraction Network-
ing protocol that overcomes these challenges while retaining Tap-
Dance’s ISP-friendly deployment requirements Our key innovation
is an architecture that avoids having to actively participate in client-
to-decoy connections.

In our scheme (Figure 1), clients register their intentions to con-
nect to phantom hosts in the “dark” or unused address space of
the deploying ISP. Once registered, clients can connect to these
phantom hosts IP addresses as if they were real proxy servers. The
Conjure station (deployed at an ISP) acts as the other end of these
connections, and responds as if it were a legitimate site or service.
To the censor, these phantom hosts appear as legitimate sites or
services, and even active probes will not reveal information that
would allow the censor to block them.

Phantom hosts are cheap to connect to, and greatly expand the
number of viable proxy endpoints that a censor must consider.
This increases the cost for censors to block, as they must detect and
block in real time. Meanwhile, even a censor that could theoretically
detect 90% of phantom hosts with confidence does not significantly
reduce the effectiveness of a circumvention system, giving Conjure
an advantage in the censor/circumventor cat-and-mouse game.

Conjure supports both IPv4 and IPv6, though we note that the
technique is especially powerful in IPv6, where censors cannot ex-
haustively scan the address space ahead of time to identify addresses
that change behavior. Because we fully control the proxy transport,
connections can live as long as needed, without the complexity
faced by TapDance.

We introduce the Conjure protocol (Section 4) and analyze its
security, finding that it resists a broader range of detection at-
tacks than TapDance. We have implemented Conjure (Section 5)
and deployed it on a 20 Gbps ISP testbed similar to the TapDance
deployment [20]. Compared to TapDance, we find that Conjure
has reduced complexity and substantially improved performance
(Section 6): on average, Conjure has 20% lower latency, 14% faster
download bandwidth, and over 1400 times faster upload bandwidth.
In addition, Conjure is significantly more flexible than existing Re-
fraction Networking protocols, allowing maintainers to respond to

future censor techniques with greater agility. We believe that these
advantages will make Conjure a strong choice for future Refraction
Networking deployments.

We have released the open source implementation of the Conjure
client at https://github.com/refraction-networking/gotapdance/tree/
dark-decoy.

2 BACKGROUND
Refraction Networking operates by injecting covert communica-
tion inside a client’s HTTPS connection with a reachable site, also
known as a decoy site. In a regular HTTPS session, a client es-
tablishes a TCP connection, performs a TLS handshake with a
destination site, sends an encrypted web request, and receives an
encrypted response. In Refraction Networking, at least one direc-
tion of this exchange is observed by a refraction station, deployed
at some Internet service provider (ISP). The station watches for a
covert signal from the client that this connection is to be used for
censorship circumvention. Upon seeing the signal, the station will
take over the HTTPS session, and establish a proxy session with
the client that can then be used for covert communication.

One of the key challenges for Refraction Networking is in taking
over a session. The station must start responding to the client’s
traffic as if it were the decoy destination, and at the same time
prevent the destination from sending its own responses back to
the client. A simple approach is to have the refraction station act
as an inline transparent proxy (Figure 2a) that forwards the traffic
between the client and the decoy site. After a TLS handshake has
been completed, the station terminates the connection with the
decoy site by sending a TCP reset and takes over the session with
the client.

An inline element, however, can significantly affect the relia-
bility and performance of the regular, non-refraction traffic of an
ISP. Cirripede [26] and Telex [60] attempted to mitigate this by
dynamically adding router rules to forward only a subset of traffic
from a registered client or an active session through the element,
but this nevertheless presented a deployability challenge.

TapDance [59] offered an alternative design that did not require
the blocking or redirection of traffic, but used a mirror port instead
(Figure 2b). In TapDance a client sends an incomplete HTTP request,
which causes the decoy site to pause waiting for more data while the
station takes over the connection in its place. After a client would
receive a packet initiated by the station, its TCP sequence numbers
would become desynchronized with the decoy site, causing the
decoy to ignore the packets sent by the client.

This approach reduced the barriers to deployment and TapDance
was used in production during a pilot study, serving upwards of
50 000 real-world users [20]. The tap-based approach, however, has
some disadvantages. A decoy site will only ignore packets as long
as the sequence numbers stay within its TCP window, and will
terminate the connection after a timeout. Frolov et al. report that
in their pilot, they eliminated roughly a third of potential decoy
sites due to their measured window or timeout values being too
small [20]. Even so, sessions that try to upload non-trivial data
amounts (in excess of about 15 KB) or last longer than the timeout
value (ranging from 20–120 s) require the user to create new refrac-
tion connections, adding overhead, complexity, and opportunities
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(a) First generation systems for Refraction Networking, such as Telex
and Cirripede, operated as inline network elements, with the ability to
observe traffic and block specific flows. ISPs worried that if the inline
element failed, it could bring down the network.
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(b) TapDance is a second-generation Refraction Network scheme that
operates without flow blocking, needing only to passively observe traffic
and inject packets. TapDance has recently been deployed at a mid-size
ISP, but the techniques used to silence the decoy site and participate in
the client–decoy TCP connection mid-stream add significant complexity,
performance bottlenecks, and detection risk.
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(c) Conjure, our third-generation RefractionNetworking design, overcomes
these limitations. It uses two sessions. First, the client connects to a decoy
site and embeds a steganographic registration message, which the station
receives using only a passive tap. Second, the client connects to a “phan-
tom host” where there is no running server, and the station proxies the
connection in its entirety.

Figure 2: Evolution of Refraction Networking

for errors. Additionally, keeping the connections to the decoy site
open for tens of seconds uses up the site’s resources; Frolov et al.
found that a default configuration of the Apache web server would
only keep 150 simultaneous connections open, while the pilot de-
ployment would often result in dozens of connections to the same
decoy site, creating a scaling concern.

Conjure is able to avoid these problems by creating proxies at
unused IP addresses, allowing the station full control over a host it
has created, rather than forcing it tomimic an already existing decoy

(Figure 2c). This design obviates the need for taking over a session
already in progress, which both simplifies the implementation and
eliminates certain attacks, as we will discuss in Section 7.

Registration Signal In all implementations of Refraction Net-
working, a client must send a covert signal to the station to initiate
communication. This covert signal is embedded inside communica-
tion fields that must be indistinguishable from random by a censor
without access to a secret/private key available to the station. Past
implementations have used TCP initial sequence numbers [26], the
ClientRandom field inside a TLS handshake [29, 60], and the en-
crypted body of an HTTPS request [59]. In principle Conjure can
use any of these mechanisms for registration, but in our prototype
we used the HTTPS request body as it offers the greatest flexibility
for the amount of data that can be sent with the registration.

3 THREAT MODEL
Our deployment model is identical to that of TapDance: we only
require a passive tap at the deploying ISP, and the ability to inject
(spoofed) traffic from phantom hosts. Furthermore, we assume
asymmetric routing (i.e. that the tapmight only see packets from but
not to the client). However, we assume a stronger threat model for
the adversary than TapDance, as our design resists active attacks.

We assume the censor can block arbitrary IP addresses and net-
works, but faces a cost in doing so if it blocks potentially useful
resources. In particular, we assume it is difficult for the censor
to have complete knowledge of legitimate addresses used, and so
instead resorts to a blacklist approach to blocking proxies and objec-
tionable content. Whitelists are expensive for censors to maintain
and can stifle innovation, and are rarely employed by country-level
censors.

We assume that the censor can know what network the Con-
jure station(s) are deployed in and the prefixes phantom hosts are
selected from, but that blocking those networks outright brings
a collateral damage the censor is unwilling to suffer. Instead, the
censor aims to identify the addresses that are phantom hosts, and
block only those. We note this assumption supposes that the censor
does not mount effective routing decoy attacks [27, 49]; we discuss
these attacks further in Section 8.2.

We allow the censor access to the client to register and use its
own phantom hosts, so the system should ensure that these will
not reveal the phantom hosts of other users. The censor can also
actively probe addresses that it sees users accessing, and can employ
tools such as ZMap [11] to scan large network blocks, excepting
large IPv6 prefixes (e.g. a /32 IPv6 prefix contains 296 addresses).

Finally, we assume the censor can replay or preplay any connec-
tions that it suspects involve phantom hosts (or their registration)
in an attempt to confirm. However, the censor wishes to avoid
disrupting any connections before it knows for certain they are
from Conjure clients, lest they disrupt legitimate connections. This
means that injecting false data or corrupting TLS sessions is outside
the scope of the censor, but that the censor can send non-disruptive
probes (such as stale TCP acknowledgments) that would normally
be ignored. We emphasize that TapDance is observable by censors
that can send TCP packets in suspected connections, but that our
protocol is robust against this class of censor.
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Figure 3: Conjure Operations—A Conjure session is constructed in two
pieces. First a client registers by sending a TLS connection to the decoy host
(see Figure 2c) with a steganographically tagged payload. This registration
contains the true “covert” address that the client would like to connect to
and a seed which the Conjure station uses to derive the Phantom IP address
for the session (green dashed flow). Second, the client derives the same
Phantom IP address and connects directly to it using the proxy protocol
(e.g. OSSH) specified in the registration (purple dotted flow). The station
identifies registered packets by source IP, destination IP, and destination
port (client IP, phantom IP and port respectively). The traffic is passed
to a proxy server handling the specific proxy protocol, which ultimately
proxies traffic to the covert address. Secrets for the individual application
proxy service are shared out of band or derived from the secret seed shared
between client and station during registration, preventing an adversary
from successfully connecting to the application in follow up probes.

4 ARCHITECTURE
Conjure involves two high-level steps. First, clients register with
a Conjure station deployed at an ISP, and derive a phantom host
IP address from a seed shared in the registration. Then, clients
connect to the agreed upon phantom address, and the station
listening on the tap relays the client’s traffic to a local application.
The application brokers traffic to a proxy application specified by
the client in their registration providing a probe resistant tunnel.
Figure 3 describes a high-level overview of the Conjure registration
and connection behavior.

Similar to TapDance [59], our design does not require expensive
in-line flow blocking and is accomplished with only a passive tap
at the ISP, imparting little to no burden on their infrastructure
and service reliability. Our architecture is also modular, in that the
registration and connection steps operate independently, allow-
ing a wide range of flexibility to evade censors. We describe each
of these components, and then describe our implementation and
deployment in Section 5.

4.1 Registration
We use a form of Refraction Networking similar to TapDance to
register directly with the station, though Conjure registration is
significantly simpler and more difficult to detect than vanilla Tap-
Dance. This is because registration flows are unidirectional; a client
communicates their intent to register to the station without any
response from the station itself. This makes registration flows very
difficult to detect as they can be sent to any site hosted behind the
ISP, and display no evidence of proxy behavior.

While this model of registration gives the client no definitive in-
dication that their registrationwas successful, the client can attempt
to register multiple times concurrently with the same information,
and expect that one gets through. Alternatively clients can register
intent to use the proxy in other covert ways. For instance, they
could use email [28] or any other existing intermittently available
proxies to register.

A registration connection is sent to a registration decoy: any
site that supports TLS behind the ISP relative to the client. The client
completes the handshake, and sends a normal HTTPS request that
embeds a ciphertext tag in the payload. Conjure leverages the same
steganographic technique as TapDance to encode the ciphertext [59,
§3], however we send a complete request allowing the registration
decoy to respond or close the connection. The tag is encrypted such
that it is only visible to the station. The Conjure station passively
observes tagged flows obviating the need to mimic the decoy. In
addition, more potential decoys can be used in comparison to Tap-
Dance, as there is no need to exclude decoys that have timeouts or
TCP windows unfavorable for keeping connections open. In our
deployment, this results in a modest increase of 25% more decoys
that could be used than in TapDance.

The tag contains a public key (encoded to be indistinguishable
from random using Elligator [2]), and a message encrypted under
the shared secret derived from a Diffie-Hellman key exchange with
the station’s long-term public key hard-coded in the client. The
station uses its private key to compute the same shared secret from
the (decoded) client public key, and decrypts the message in the
tag. The censor, without knowledge of either the station or client’s
private key, cannot derive the shared secret, preventing it from
being able to decrypt the message, or even learn of its existence.

Inside the message, the client communicates a random seed, the
covert address they would like to connect to, the transport protocol
they will use, and other configuration-specific information, such as
flags to signify version, and feature support. The client and server
hash the seed to determine which specific IP address from the set of
shared CIDR prefixes will be used and registered as a phantom host.
It may seem intuitive to instead have the client send the specific
IP address to register, but allowing the client arbitrary choice also
allows the censor to register suspected phantom hosts and block
them if they can be used as proxies. By using a hash of a seed, the
censor would have to pre-image the hash to obtain a seed it could
use to register for a desired IP address. We discuss the intricacies
of phantom IP address selection in Section 6.2.

Once the phantom host IP address has been selected, the station
watches for packets with the source address of the original client
and the phantom as the destination, and forwards them on to the
a local application handling transports. The station only forwards
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packets that originate from the IP address of the registering client,
making the phantom host appear firewalled off to everyone but
the client. We note that censors have been observed taking over
client IP addresses for follow-up probing [14]. This would allow
censors to hijack registrations if they can connect within the small
window between client registration and connection. However this
only allows the censor to communicate to the local application
that handles transports, it does not connect them to the covert
address that the client indicated in their registration. Filtering by
client IP and phantom IP also prevents censors from enumerating
the address space before hand, as they would have to do so from
every potential client IP address. Simply scanning the prefixes with
ZMap [11] from a single vantage point would not reveal hosts that
only respond to specific IPs (e.g., firewalled subnets).

4.2 Transports
Once the client has registered, packets sent to the phantom host IP
address are detected at the station and passed to the local applica-
tion which provides proxy access to the client. A viable Conjure
transport has two main requirements: first, the protocol it uses with
the client must be difficult for the censor to passively detect and
block by traffic inspection. Second, the endpoint must resist active
probes by the censor (who does not know some shared secret).

Any protocol that satisfies these criteria can be used as an effec-
tive transport with Conjure. In this section, we describe various
existing protocols (OSSH and obfs4) as well as introduce our own
(Mask sites, TLS 1.3 eSNI, and phantom WebRTC clients) that can
be used in Conjure, and evaluate how each meet the necessary
requirements. Table 1 compares the application protocols. Conjure
uses a modular approach to transports because research into proxy
detection is ongoing. Having a variety of supported transports gives
clients a quick way to pivot and maintain proxy access even when
new proxy protocol vulnerabilities are discovered.

4.2.1 Obfuscated SSH. Obfuscated SSH [31] (OSSH) is a protocol
that attempts to mask the Secure Shell (SSH) protocol in a thin
layer of encryption. This makes it difficult for censors to identify
using basic packet filters, as there are no identifying headers or
fields to search for. Instead, Obfuscated SSH clients first send a
16-byte random seed, which is used to derive a symmetric key
that encrypts the rest of the communication. Early versions of
OSSH were passively detectable by censors, who could observe the
random seed and derive the key, allowing them to de-obfuscate the
protocol. These versions also did not protect against active probing
attacks, as a censor could easily create their own connections to
confirm if a server supports the protocol.

More recent versions of OSSH, such as those used by Psiphon [44],
mix a secret value into the key derivation, thwarting the naive pas-
sive detection/decryption attack. The secret is distributed out-of-
band along with the proxy’s address, and is unknown to a passive or
active-probing censor. If a client connects and cannot demonstrate
knowledge of the secret, the OSSH server does not respond, making
it more difficult for censors to discover OSSH servers via active
probing attacks.

4.2.2 obfs4. obfs4 [52] is a pluggable transport used by Tor [8] de-
signed to resist both passive detection and active probing. Traffic is

obfuscated by encrypting it and sending headerless ciphertext mes-
sages. Similar to OSSH, clients can only connect to obfs4 servers
by proving knowledge of a secret. Probing censors that do not have
the secret get no response from obfs4 servers, making it difficult
for censors to confirm if a host is a proxy. Server IPs and their cor-
responding secrets are normally distributed out-of-band through
Tor’s bridge distribution system.

During registration, the Conjure client and station could use
the registration seed to derive the obfs4 secrets (NODE_ID and
server private/public keys) needed for the client to connect. The
station could then launch an obfs4 server instance locally for the
client to connect to as a transport using the derived secrets. If a
censor attempts to connect to the phantom address (even using the
client’s IP), it will not receive a response, as it does not know the
registration seed used to derive the obfs4 secrets.

Using obfs4 as a Conjure application has the added benefit
that servers and secrets do not need to be distributed out-of-band,
eliminating one of the main ways censors currently block existing
obfs4 instances [7]. Instead, each Conjure obfs4 instance is private
to its registering client, and there is no public service that censors
can use to discover them.

4.2.3 TLS. TLS is a natural protocol for Conjure applications, be-
cause it is ubiquitous on the Internet (making it difficult for censors
to block), while also providing strong cryptographic protection
against passive and active network adversaries. However, there are
several challenges to make it robust against censors that wish to
block a particular service.

One challenge is that TLS sends important server-identifying
content in plaintext during the TLS handshake. This includes the
Server Name Indication (SNI) in the Client Hello message that
specifies the domain name, and the X.509 Certificate of the server.

To evade censors, we must send a plausible SNI value (sending no
SNI is uncommon and easily blocked—only 1% of TLS connections
do not send the SNI extension [21]), and we must have the server
respond with a plausible (and corresponding) certificate. Even if
we manage to avoid sending either in the clear (e.g. using session
resumption), censors could actively probe the server in a way that
would normally elicit a certificate.
Encrypted SNI TLS 1.3 [46] offers several features that may
greatly simplify Conjure transport design. For instance, TLS 1.3
handshakes include encrypted certificates, removing a strong traffic
classification feature. Unfortunately, TLS 1.3 currently still sends
the SNI in the (plaintext) Client Hello, meaning we would have to
choose a realistic domain to fool a censor.

However, there are proposals to encrypt the SNI in the Client
Hello [47], though none have been implemented or deployed as of
2019. Nonetheless, if widely adopted, Encrypted SNI (ESNI) would
offer a powerful solution for Conjure applications by allowing the
client to use plain TLS as the transport while remaining hidden from
the censor. Censors could still try to actively probe with guesses
for the SNI, but servers could respond with generic “Unknown
SNI” errors. If such responses were common for incorrect SNI, the
censor’s efforts to identify phantom hosts would be frustrated.
Mask Sites Another option to overcome active and passive prob-
ing attacks is to mimic existing TLS sites. In this application, we
simply forward traffic between any connecting clients and a real
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TLS site. To a censor, our phantom site will be difficult to distin-
guish from the actual “mask” site, making it expensive for them to
block without potentially blocking the real site. TLS connections
to the Conjure station will terminate exactly as connections to the
mask site would, with Conjure acting as a transparent TCP-layer
proxy between the client and mask site. However, this leaves the
application unable to introspect on the contents of the TLS con-
nection to the mask site, as it does not have the client-side shared
secrets, and it cannot overtly man-in-the-middle the connection
before knowing it is communicating with the legitimate client (and
not the censor).

To covertly signal to the relaying application, the client changes
the shared secret it derives with the mask site to something that
the Conjure station can also derive. The client’s first Application
Data packet is thus encrypted under a different secret than the
client/mask site secret. Specifically, the client uses the seed sent dur-
ing registration to derive the pre-master secret for the connection.
The new pre-master secret is hashed alongwith the client and server
randoms of the current (mask site) TLS connection to obtain the
master secret that determines encryption/decryption/authentication
keys.

The Conjure station can determine if the client did this by trial
decryption with the master secret derived from the known seed
shared at registration. If it succeeds, the client has proved knowl-
edge of the seed, and the application can respond as a proxy. If not,
the application simply continues to forward data between the client
and the mask site, in case a client’s IP was taken over by a censor
after registration. As the censor does not have knowledge of the
seed used in registration, it cannot coerce the application to appear
as anything besides the mask site.

Mask Site Selection Selecting which sites to masquerade as
must be done carefully to avoid censors being able to detect obvious
choices. For example, if a small university network has a phantom
host in their network that appears to be apple.com, it would be easy
for a censor to block as a likely non-legitimate host. Likewise, if a
phantom host at an IP address pretends to be a domain that globally
resolves to a single (different) IP address, the censor could also
trivially identify and block the phantom host. Several approaches
are possible:

Nearby sites: pick websites that are legitimately hosted in or near
the network of the phantom host addresses effectively creat-
ing copies of legitimate sites. However, other signals such
as DNS may reveal the true mask site.

Popular sites: choose mask sites from a list such as the Alexa top
site [1] list. Although it may be wise to avoid sites that are
obviously not hosted in the phantom host address range,
such as large companies that run their own data centers and
own their own ASN. The list could also be filtered to domains
that resolve to different IP addresses from different vantage
points, making it harder for a censor to know if a phantom
host corresponds to a domain’s IP.

Passive observation: collect sites by passively observing DNS re-
quests, TLS SNI, or certificates that pass by at the network
tap. This would allow for building a realistic set of sites that
are plausibly in the vicinity of the phantom host addresses
that pass by the tap.
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Table 1: Conjure Applications— “Active probe resistant” protocols are
designed to look innocuous even if scanned by a censor. “Tunneling” (T)
protocols use another protocol (e.g. TLS) to blend in, while “Randomized”
(R) ones attempt to have no discernable protocol fingerprint or headers. For
existing protocols, we list any known attacks suggested in the literature
that let censors passively detect them. We also list if we have implemented
the application in our prototype.

In practice, clients can often try multiple phantom hosts/mask
sites over several attempts, as blocking the client outright may
negatively impact other unrelated users behind the same network
(e.g. in the case of NAT). Thus, even a censor that can block most but
not all mask site usage (i.e. by employing website fingerprinting)
only delays access, and doesn’t prevent it outright.

4.2.4 PhantomWebRTC Clients. Phantom hosts could also pretend
to be clients instead of servers. This may potentially give censors
less to block on, as actively probing clients commonly returns few
or no open ports. A censor may also be hesitant to block client-to-
client communication, as it could block peer-to-peer applications
as well as many video conferencing protocols. WebRTC is a natural
choice for a client-to-client transport in censorship circumvention,
and is already used in existing schemes like Snowflake [23]. Conjure
could also use WebRTC as the transport protocol, convincing the
censor that two clients are communicating.

5 IMPLEMENTATION
We implemented Conjure and deployed a station at a mid-sized
transit ISP tapping traffic from a 20 Gbps router. We used PF_RING
to consume the 20 Gbps link, and feed it to a custom detector writ-
ten in Rust. The detector processes all packets and watches for new
registrations. Once a registration is detected the local application is
notified via an out-of-band ZMQ [61] connection, which provides
the registering client’s IP address, the seed, and other configuration
information. We note that this is not along a critical timing path
for proxying connections and no client packets are sent over ZMQ.

The detectors forwards all packets destined for a (registered)
phantom host address to the local application via tun interfaces
and iptables DNAT rules that rewrite the destination IP, allowing
the local application to accept and respond to connections using
the native operating system’s interface. Figure 4 shows the over-
all architecture of our implementation, which we describe in the
following subsections.

5.1 Detector
We implemented our detector in approximately 1,800 lines of Rust,
compared to over 5,000 lines for TapDance (excluding from both
auto-generated protobuf code).
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Figure 4: Station Architecture—We used PF_RING to receive packets
from a 20 Gbps tap which we load balance across 4 CPU cores. The detector
processes identify registrations, sending notification to all other cores via
redis and to the local application via ZMQ when a new registration is
received. The detector also identifies packets associated with registered
flows and diverts them to the local application which handles proxying
connections. The local application determines which transport the flow
should use based on a parameter specified in the client’s registration and
initializes a goroutine to handle forwarding. A censor trying to interfere in
this connection would need to take over the clients IP address in a precise
window (after the registration but before the client connects to the phantom)
and correctly guess the phantom host’s IP address (or connect to all possible
phantom IPs) before the active probe traffic gets to the local application. At
this point their connection will fail in a manner specific to the transport
that the client specified in the registration (e.g. connecting to OSSH without
knowledge of the pre-shared secret).

To achieve performance needed to operate at 20 Gbps, we used
PF_RING [42] to load balance incoming packets across 4 CPU cores,
which each run a dedicated detector process. PF_RING supports
load balancing packets based on either their flow (5-tuple), or their
source/destination IPs, which allows connections to be processed
by a single process without requiring communication across inde-
pendent cores.

However, in Conjure, registration connections and phantom
proxy connections could end up being load balanced to different
cores. In order for an individual detector process to forward phan-
tom proxy connections to the application, it must know about the
original registration, even if that registration was observed by a
different core. To address this, we used Redis [30] to allow each
core’s process to broadcast (publish) newly registered decoys to
the other cores so they can add them to their local list of registered
phantom host addresses. Broadcasting registrations across all cores
ensures that each detector process sees all registrations, and can
forward phantom proxy connections accordingly.

A second problem arises when considering how to timeout un-
used phantom proxies in the detector. When a phantom proxy is
timed out, it no longer responds to any active probes. A naive imple-
mentation might simply have each core timeout unused phantom

proxies after they go unused for a set time. However, this could
leave one core (that sees active proxy use) forwarding packets to the
application, while other cores (that do not see use) would timeout
the proxy. A censor could probe the phantom proxy and observe
this behavior: if the censor’s packets are processed on a forwarding
core, the censor can establish a TCP connection with the phantom
application. Otherwise, if they are processed on a timed out core,
the censor’s packets will be ignored. Through multiple connections,
the censor could use this strange behavior (of intermittent TCP
response) to identify and block potential phantom proxies.

To address this issue of differing core timeouts, we implemented
a new load-balancing algorithm in PF_RING to select the core based
only off the destination IP address of a packet. This means that all
packets sent to a particular phantom proxy address are processed by
the same detector core, which allows the phantom proxy’s timeout
state to be consistent regardless of what source attempts to connect
to it.

5.2 Client
We created a Conjure client and integrated it with the Psiphon [44]
anticensorship client. Psiphon has millions of users in censored
countries, and we are in the early stages of rolling Conjure out to
real-world users.

Our Conjure client is written in Golang, and uses the Refraction
Networking tagging schema (Section 4.1) for registration. We note
that this protocol will be more difficult for censors to observe than
normal TapDance because it consists of only a single (complete)
request, and the station does not have to spoof packets as the decoy
during registration, only passively observe them.

We implemented support for two of the transports in our client:
Obfuscated SSH used by Psiphon (Section 4.2.1) and our TLS Mask
Site protocol (Section 4.2.3). Our client signals which transport it
will use in the registration tag along with a flag indicating whether
the client supports IPv6, allowing IPv4-only clients to derive exclu-
sively IPv4 phantom hosts. After registration, the client connects to
the derived phantom host address, and speaks the specified trans-
port protocol, which tunnels between the client and either the mask
site transport local to the station or Psiphon’s backend servers. A
SOCKS connection can be initiated through this tunnel to allow for
connection multiplexing.

5.3 Application and Transports
We implemented our station-side application in about 500 lines
of Golang. This includes support for OSSH (via integration with
Psiphon) and Mask Sites, both specifiable by the client during reg-
istration. We note that support for other transport protocols (e.g.
Obfs4 or WebRTC) can be added as development continues.

5.3.1 OSSH. Our Conjure implementation includes support for
OSSH through integration with Psiphon. Client traffic is forwarded
to a Psiphon server by using Conjure as a transparent proxy. This
symbiotic relationship provides Conjure with active and passive
probe resistance, while preventing censors from being able to inex-
pensively block Psiphon’s backend servers individually.

5.3.2 Mask Sites. We implemented a mask site mimicking proxy,
that pretends to be a mask site when actively probed by the censor.
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Once the station accepts accepts a connection for a registered flow,
it initially acts as a transparent proxy to a mask site specified by the
client during registration. The application parses the handshake,
forwarding packets back and forth between client and mask site
without modification, extracting the server and client randoms. The
application attempts to decrypt the first application data record
from the client using a key derived from the secret seed, client,
and server randoms. We use the uTLS library [21, 41] on both the
application and client to allow us to change the TLS secrets being
used after the handshake.

If the decryption is successful, the application switches to for-
warding (decrypted) data back and forth with a client-specified
endpoint, such as a SOCKS proxy, which can provide multiple se-
cure connections over the single connection to the phantom host.

6 EVALUATION
To evaluate our Conjure implementation, we compare its band-
width and latency to that of TapDance in a realistic ISP setting. We
used a 20 Gbps network tap at a mid-sized ISP and run both imple-
mentations on a 1U server with an 8-core Intel Xeon E5-2640 CPU,
64GB of RAM, and a dual-port Intel X710 10GbE SFP+ network
interface. A typical week of bandwidth seen on the tap is shown in
Figure 5, ranging from 2.4 Gbps to peaks above 17 Gbps.

6.1 Performance
We evaluated the performance of a client from an India-based VPS.
Figures 6 and 7 show the upload and download bandwidth as mea-
sured by iperf for TapDance, our Conjure implementation (using
the mask site application), and a direct connection to our iperf
server in the ISP’s network.

TapDance must reconnect if the amount of data sent by the client
exceeds a short TCP window (typically on the order of 32 KBytes)
or the connection persists until a timeout (18-120 seconds). At each
reconnect, the TapDance client naively blocks until a new TLS con-
nection to the decoy and station has been established. Thus, when
uploading files, TapDance has to create a new TLS connection for
every 32 KBytes of data it sends, limiting its average upload band-
width to around 0.1 Mbps due to the high overhead. In contrast, our
Conjure implementation is able to maintain the same connection
during large uploads, and achieves performance inline with the
direct connection, over 1400 times faster.

During download-only workloads, TapDance is able to better uti-
lize the network, but must still reconnect before the decoy times out.
In our tests, we see TapDance reconnect every 25 seconds, which
can negatively impact the performance of downloads or any real-
time streaming applications. Again, our Conjure implementation
is able to maintain a single connection and provide the maximum
download rate without interruption, 14% faster than TapDance.

We also measure the latency of repeated small requests. In both
Conjure (using the OSSH protocol) and TapDance we establish a
single session tunnel using our integrated Psiphon client, and make
1000 requests through each using Apache Benchmark (ab). We
find that our India-based VPS throttles TLS but not OSSH, making
TapDance twice as slow as Conjure. We repeated these tests on
a US-based VPS which does not have such throttling, and show
results in Figure 8. TapDance’s frequent reconnects adds significant

latency to about 10% of requests. In addition, the median latency
of Conjure is about 19% faster, due to the added overhead of TLS
and the complex path that TapDance data packets take through the
station compared to Conjure.

6.2 Address Selection
Phantom host IP addresses must be derived from network blocks
that are routed (so they pass the Conjure station) and contain other
legitimate hosts (so that censors cannot block the entire network
without collateral damage). Because of the large number of IPv6 ad-
dresses, even moderately-sized network prefixes have astronomical
numbers of addresses: a single /32 prefix has 296 possible addresses.
Therefore, client-chosen seeds have negligible probability of cor-
responding to addresses that are already being used by legitimate
hosts. This allows us to select phantom host addresses from net-
work prefixes that contain legitimate hosts—crucial to discouraging
the censor from blocking them outright—without worry that regis-
trations could interfere with legitimate services.

6.2.1 IPv4. While Conjure works best with IPv6, it can also support
IPv4, with some careful caveats.

First, in IPv4, there are substantially fewer addresses, allowing
censors to potentially enumerate all the network prefixes that
pass by the ISP station, compose the list of innocuous sites, and
block other websites, as they are being summoned by Conjure. To
address this, Conjure phantom hosts are firewalled from all IPs
other than the client that registered them, providing a reason why
the address hasn’t been seen in an enumerating scan, conducted by
a censor from a single vantage point. Censors could attempt to scan
the network from all potential client vantage points, by co-opting
client IPs to perform scans—a behavior previously observed by the
Great Firewall of China to scan for Tor bridges [14]. To prevent
this, for IPv4 Conjure, we dynamically generate the TCP port of
the phantom host (along with its IP) from the registration seed,
which further makes exhaustive scans infeasible: a censor that must
enumerate from the vantage point of a /10 of client IPs (4 million
IPs) to a /16 (65K IPs) of potential phantom proxies on each of 65K
potential ports would take nearly 50 years of scanning with ZMap
at 10 Gbps. We note that while the use of non-standard ports could
potentially be suspicious, several successful circumvention tools—
including Psiphon [44] and obfs4 [52]—use random ports on their
obfuscated protocols. Finally, we note that censors that whitelist
either standard ports or discovered hosts from enumerations scans
would over-block new services that came online after their scans.

A second problem in IPv4 Conjure is that the limited range of
IPs (and ports) makes it possible for a censor to pre-image the
hash used to derive the phantom address from the seed. Even with
the /16 of IPs and all 65K ports, in order to find a seed for any
desired address a censor needs to only test an expected 232 possible
seeds. The censor could then register a suspected address, and see
if it provides proxy access. If it does, the censor learns there is no
legitimate service there, and can block it. To combat this, we allow
only a single client to register for a particular phantom address at a
time. A censor could attempt to register all addresses in an attempt
to deny proxy service to legitimate users, but this would be easily
observed at the registration system, where rate limits via client
puzzles or account-based fees could be enforced.
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Figure 5: Tap Bandwidth—We deployed Conjure in a realistic ISP testbed on a tap of a 20 Gbps router. In a typical week, traffic ranges from 2–17 Gbps.
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Figure 6: Upload Performance—We used iperf to measure the upload
bandwidth for a direct connection, TapDance, and Conjure. As expected,
TapDance’s upload performance is several orders of magnitude lower than
the link capacity, due to the overhead of making frequent reconnects to the
decoy site.

Finally, legitimate IPv4 addresses density is much higher than
IPv6, increasing the potential for users to accidentally register seeds
that derive phantom addresses corresponding to live hosts. To ad-
dress this, the station sends probes to potential IPv4 phantom hosts
during registration, and ignores the registration if a real host re-
sponds. Censors that try to register specific phantom proxies will be
unable to distinguish if another user has registered it or a legitimate
host is there, as in both cases we ignore the censor’s registration.
This also serves to prevent abuse by attackers that attempt to use
the Conjure station to interfere with innocuous services.

6.2.2 IPv6. In IPv6 Conjure address enumeration and pre-image
attacks are infeasible due to a large amount of potential IP addresses.
Our ISP routes a /32 IPv6 prefix, which provides 296 potential phan-
tom host IP addresses. However, IPv6 addresses often have long runs
of 0 bits in them, and rarely use all 128-bits equally. For instance,
google.com has the address 2607:f8b0:400f:806::2004, which
only has 24 bits set to 1. Censors might try to use this observation
and block high entropy IPv6 addresses.
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Figure 7: Download Performance—Using iperf, we compare the down-
load performance of a direct connection, TapDance, and Conjure. While
TapDance can achieve link-capacity download, it still has to occasionally
reconnect to the decoy, as seen by the periodic dips. These reconnects are
more common the more data the client sends (e.g. requests or uploads).

Tomeasure and quantify this problem, we collected and analyzed
16 hours of netflow data at our ISP tap. We extracted 4013 IPv6
addresses observed in the /32 IPv6 prefix routed by the ISP (out of
32,817 total observed). To confirm the hypothesis that 0 bits are
more common in IPv6 addresses, we counted the number of bits set
in each address. Figure 9 shows a histogram of the number of bits
set and compares it to the histogram of a uniformly random set of
addresses. (The random distribution’s center is skewed from 64 due
to the number of set bits in our fixed /32 network prefix.) Although
these distributions are distinguishable, they do have significant
overlap. Given enough samples, a censor could trivially tell if the
addresses were chosen randomly or were legitimate hosts. However,
a censor’s job is significantly harder, and theymust tell from a single
sample which distribution it comes from. The presence of random-
looking addresses makes it difficult for censors to block such hosts
outright.

Prior work by Foremski et al. [18] has developed models to gen-
erate likely IPv6 addresses from a set of known addresses, useful
for discovering new hosts to scan given known ones. We use their
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Figure 8: Latency—We compare the CDF of latency for requests between
Conjure and TapDance. In each case, we have a long-lived session over
which requests are being made using Apache Benchmark (ab). At the me-
dian, Conjure has 44 ms (19%) faster latency than TapDance. In addition,
TapDance requests are frequently slowed by its intermittent reconnections
to the decoy, as shown in the longer tail of TapDance’s latency CDF. Conjure
has no such reconnects, and thus has more uniform latency. At the 99th
percentile, Conjure is 281 ms (92%) faster than TapDance.
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Figure 9: IPv6 Bits Set—We measure the number of bits set to 1 in IPv6
addresses in our ISP’s /32 and observed by our tap, and compare it to the Bi-
nomial distribution (Random) we would expect to see if the 96 non-network
bits of each address were chosen randomly. In practice, we observe much
fewer bits set. Nonetheless, the significant overlap of these distributions
would make it difficult for censors to block any individual phantom hosts
without collateral risk of blocking legitimate services.

Entropy/IP tool to analyze the addresses we collected. Figure 10
shows the normalized entropy of each address 4-bit nibble and the
total entropy (18.8 out of 32). Nibbles that were constant across all
addresses (such as the /32 network prefix nibbles) have zero entropy,
while those that equally span the range of values have maximum en-
tropy (normalized to 1). In our addresses, we observe an entropy of
over 75 bits, with more entropy in the later segments of the address.
While not quite the full 96 bits that uniformly random would pro-
duce, this is still a significant amount for phantom hosts to hide in.

For a specific deployment, operators should be careful to observe
the distribution of addresses in the subnets they use, and possibly
limit to randomizing “realistic” bits (e.g. the upper and/or last 32
bits within the given /32). As an improvement, we could also use the

Entropy/IP tool [18] to generate the random IPv6 phantom hosts
from the registration seed based on the Bayesian Network model
created by the tool.

7 ATTACKS AND DEFENSES
In this section, we discuss several attacks a censor might attempt
to either block phantom hosts from being registered or used.

7.1 Probing phantom hosts
Censors may attempt to actively probe suspected phantom hosts to
determine if they are proxies or real hosts. China has been observed
using exactly this technique to discover existing proxies and Tor
bridge nodes [7, 14, 57, 58]. In response to China’s active probing,
Tor and other circumvention tool developers have developed probe-
resistant protocols, such as obfs4 [52], Obfuscated SSH (OSSH) [31],
and Shadowsocks [50]. Each of these protocols require the client
to know a secret distributed alongside the original proxy address.
Without knowledge of this secret, active-probing censors will not
receive any response from these hosts, making it difficult for censors
to tell if a server is a proxy or a non-responsive legitimate host.
Obfuscated SSH Modern OSSH protocols are intended to be
probe-resistant. Censors that attempt to probe suspected OSSH
servers without knowledge of the secret receive no data response,
making it difficult to distinguish them from other non-responsive
hosts. To confirm this, we use ZMap [11] to scan over 1 billion
random IP/port combinations, and sent 25 random bytes (corre-
sponding to the OSSH handshake) to the approximately 800,000
servers that responded. We expect very few of these to actually be
OSSH servers as they are simply random servers on random TCP
ports. However, over 99.4% of them did not respond with any data,
behavior mirrored by OSSH servers. Furthermore, 7.42% of servers
closed the connection with a TCP RST after we send our random
data, a response we also see with OSSH. While there may be other
ways to differentiate OSSH servers from others online, our tests
suggest censors could face steep false-positive rates in identifying
OSSH servers with active probing.
obfs4 Unlike previous versions of obfsproxy, the obfs4 protocol
is designed to be resistant to active probing attacks, requiring the
client prove knowledge of a secret before the server will respond.
We verified that naive active probing attacks (where we attempt to
connect to an obfs4 server without knowledge of the secret and see
if it provides proxy access) do not work against obfs4. In addition,
although China is effective at blocking obfs3, the more recent
probe-resistant obfs4 remains a viable proxy in the country.1

Mask sites The censor could also attempt to fingerprint amasked
site and compare it to a suspected Conjure application. For in-
stance, if a phantom host IP responds to a censors’ probes pretend-
ing to be example.com, the censor could probe real instances of
example.com on different ports and see how it responds. Then, the
censor can probe the phantom host IP, and see if it responds sim-
ilarly (e.g. with the same set of open ports and payloads for certain
kinds of probes). To defend against this, we forward all traffic des-
tined to the phantom host to the masked site, including ports that
1E.g., https://metrics.torproject.org/userstats-bridge-combined.html?start=2019-06-
27&end=2019-09-25&country=cn shows obfs4 clients from China successfully using
Tor.
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Figure 10: IPv6 Entropy—Censors may be able to distinguish random-
looking phantom host IPv6 addresses from legitimately used ones based
on the address’s entropy. We used the Entropy/IP tool [18] to analyze the
entropy of 4013 IPv6 addresses observed by our tap. This plot from the tool
shows the normalized entropy of each nibble in the addresses, which is fairly
high for most of the non-network prefix nibbles. In total, these addresses
have about 75 bits of entropy (out of 96 expected), and the relatively high
entropy present in each nibble would make it difficult for a censor to block
without significant false positives / negatives. While distinguishable from
random given enough samples, we can also use the Entropy/IP tool to
generate addresses from the Bayesian Network model it produces.

are not relevant to the proxy application (e.g. non 443). This ensures
that above the TCP layer, we appear to be the mask site. However,
there may be differences in TCP/IP implementations, for instance,
how IP IDs are incremented, or how TCP timestamps are incre-
mented (or supported at all) that may be different from themask site.
To combat this, we can filter mask sites by those that have identical
TCP/IP stacks to ours, as we use a common Linux implementation.
We also note that this attack only applies when we use the mask site
as an application, and that Conjure can support other applications
(e.g. obfsproxy, WebRTC, etc) that do not have this issue.

We acknowledge that perfect mimicry of the real site is likely
infeasible: Houmansadr et al. [25] demonstrated the difficulty in
fully mimicking known applications, showing that staying fully-
feature compatible is an expensive and potentially intractable prob-
lem for circumvention systems. However, their study focuses on
application-specific mimicry, used by circumvention tools like Cen-
sorSpoofer, StegoTorus, and Skypemorph. These tools generally
attempt to mimic a specific protocol used by a complex applica-
tion such as Skype, where only one or a handful of official popular
clients are used. Houmansadr et al. [25] show that such mimicry
is difficult in practice due to the complexity and opaqueness of
specifications, side protocols that applications may use, and intra-
and inter-dependence on connections and other protocols.

In contrast, mask sites have the advantage that we can mimic
any sites from a large set of heterogeneous real websites, making
it harder for a censor to fully fingerprint and characterize all po-
tential mask sites. As websites may themselves use distributed or
heterogeneous server implementations, it could be more difficult
for a censor to block all mask site application use. Nonetheless, it

is still possible for censors to use active probing attacks to detect
either protocol feature, payload size, or timing differences between
mask sites and the real sites they attempt to mimic.

7.2 Passive identification
Censors might also attempt to use passive methods to distinguish
and block communication with registration decoys or phantom
hosts. For example, Website Fingerprinting [24, 51, 56] (WF) uses
the patterns of encrypted traffic to identify which website a client is
connected to. WF uses a classifier to label the traffic as belonging to
one of several knownwebsites, or (in some variants), an unknown or
background class. Though WF is commonly studied in the context
of anonymous web browsing, a censor could also use WF to detect
Conjure applications by distinguishing known traffic patterns of
legitimate website use from traffic generated by Conjure (unknown
class). Alternatively, the censor could monitor traffic for patterns
consistent with tunneled access to a set of blocked websites.

Wang et al. [53] demonstrated several effective classifiers that
can passively distinguish normal traffic from obfuscated circum-
vention protocols including obfs3, obfs4, Format-transforming
encryption [12], and meek [17]. However, despite the low false
positive rate of these classifiers, Wang et al. [53] caution that the
base rate of normal traffic compared to obfuscated traffic would
force censors that employ such attacks to suffer significant collat-
eral damage in degrading performance and reliability of legitimate
traffic. Indeed, to date, censors have not been observed using WF
or other passive techniques, possibly due to the inaccuracy of these
identification techniques in practice. Even small false positive rates
means blocking mostly legitimate connections, and false negatives
could allow clients to retry until they gain access.

More importantly, Conjure applications offer great flexibility
in deploying traffic analysis defenses; for example, traffic shaping
strategies such as implemented in Slitheen [3] could be easily em-
ployed in Conjure. Conjure clients could also choose from a large
set of potential applications, forcing censors to have to block access
to all of them to block use.

7.3 Blocking registration
Tomake registration more difficult, censors could block TLS connec-
tions to all of the limited decoys available in a deployment. Using
TapDance’s current deployment, this would involve blocking over
1500 sites. We note that such an attack would completely disable
all existing Refraction Networking schemes, as none work without
being able to access legitimate decoys past the station. In Conjure,
this would only block new registrations, and would not impact
users that previously registered. Furthermore, registrations could
also occur over email, or over lower-bandwidth covert channels,
such as port (or even IP) knocking past the station, that would be
more difficult for the censor to block.

7.4 ICMP
Censors can use ping or traceroute utilities (via ICMP) to probe
potential phantom hosts. Because there is (usually) no host at the
phantom host address, these probes will timeout and produce no
response. They might also produce “Destination Unreachable” re-
sponses from routers depending on how they are configured. We
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performed a scan of 10 million IPv6 addresses in a routable /32
prefix to see if it is common to respond with such tell-tale ICMP
messages for unused messages. We found only 0.016% of addresses
responded with any ICMP messages (mainly “Time Exceeded” and
“Destination Unreachable”).

Many legitimate hosts and routers do not respond to or forward
ICMP packets, and it is common for firewalls to block traceroutes
from penetrating inside networks. Thus, simply ignoring ICMP
messages (or low TTL packets that might be used by traceroute)
may be a viable strategy. Alternatively, we could spoof responses
to convince an adversary that a phantom host is part of a particular
network. However, this strategy requires careful consideration of
what network makes sense for a mask site to be in. Also, the censor
may try to probe for addresses around the phantom host (but still
likely to be in the same network), which must also be responded to.

8 RELATEDWORK
Wefirst compare Conjurewith other RefractionNetworking schemes
and then discuss other related work.

8.1 Prior Refraction Networking Schemes
Since 2011, there have been several proposed Refraction Network-
ing schemes. Telex [60], Cirripede [26] and Decoy Routing (aka
Curveball) [29] are “first generation” protocols with nearly identical
features. These designs require inline flow blocking at the ISP to
allow the station to intercept flows with detected tags and act as
the decoy host for them. However, inline blocking is difficult for
ISPs to deploy, as it requires special-purpose hardware to be placed
inline with production traffic, introducing risk of failures and out-
ages that may be expensive for the ISP and potentially violate their
contractual obligations (SLAs).

TapDance [59] solves the issue of inline-blocking by coercing
the decoy into staying silent, and allowing the station to respond
instead. However, as previously described, this trick comes at a cost:
the decoy only stays silent for a short timeout (typically 30–120 s),
and limits the amount of data the client can send before it responds.
TapDance clients must keep connections short and repeatedly re-
connect to decoys, increasing overhead and potentially alerting
censors with this pattern. Conjure addresses this issue and allows
clients to maintain long-lived connections to the phantom host.

Rebound [13] and Waterfall [40] both focus on routing asym-
metries and routing attacks by the censor. Rebound modifies the
client’s packets on the way to the decoy, and uses error pages on
the decoy site to reflect data back to the client. Waterfall only ob-
serves and modifies the decoy-to-client traffic, similarly using error
pages on the decoy to reflect communication from the client to
the station. These schemes also provide some resistance to traffic
analysis, as they use the real decoy to reflect data to the user. Thus,
the TCP/TLS behavior seen by the censor more closely matches
that of a legitimate decoy connection. However, latency and other
packet-timing characteristics may be observable, and both schemes
require some form of inline flow blocking.

Slitheen [3] focuses on addressing observability by replacing
data in packets sent by the legitimate decoy. Thus, even the packet
timings and sizes of a Slitheen connection match that of a legitimate
decoy connection. However, Slitheen also requires inline-blocking,

and introduces a large overhead as it has to wait for the subset
of data-carrying packets from the decoy that Slitheen can safely
replace. We note that the Slitheen model of mimicry is compatible
with Conjure, as we could use Slitheen as the application protocol.
Despite using a passive tap, our scheme is effectively inline to the
phantom host (which won’t otherwise respond).

Bocovich andGoldberg propose an asymmetric gossip scheme [4]
that combines a passive monitor on the forward path from the client
to the decoy with an inline blocking element on the return path.
These elements work in concert to allow schemes such as Telex
and Slitheen to work on asymmetric connections. This approach,
however, still requires inline blocking on one direction, and fur-
ther complicates deployment by requiring the installation of more
components and potentially complex coordination between them.
MultiFlow [34] uses refraction networking only as a forward mech-
anism to communicate a web request to the station, and then uses
a bulletin board or email to deliver the response back. It does not
require inline flow blocking as it does not modify users’ traffic at all,
but it fundamentally relies on a separate data delivery mechanism,
similar to other cloud- or email-based circumvention tools [5, 28].

Conjure allows a large amount of flexibility compared to previ-
ous schemes. Because we have significant degrees of freedom in
choosing the specific application the phantom host will mimic or
talk, our scheme can combine the best of existing Refraction Net-
working protocols to achieve high performance, be easy to deploy,
and also be resistant to active attacks such as replaying or prob-
ing by the censor. Table 2 lists the existing Refraction Networking
schemes and their features, as compared to Conjure.

8.2 Decoy Placement and Routing Attacks
Houmansadr et al. [26] found that placing refraction proxies in
a handful of Tier 1 networks would be sufficient for them to be
usable by the majority of the Internet population. Cesareo et al. [6]
developed an algorithm for optimizing the placement of proxies
based on AS-level Internet topology data. Schuchard et al. [49]
suggested that a censor may actively change its routes to ensure
traffic leaving its country avoids the proxies, but Houmansadr et
al. [27] suggested that real-world constraints on routing make this
attack difficult to carry out in practice. Nevertheless, Nasr et al. [39]
propose a game-theoretic framework to optimize proxy placement
in an adversarial setting, and the design of Waterfall [40] is in part
motivated by resilience to routing attacks, as it is more difficult for
the censor to control the return path from a decoy site, rather than
the forward path.

In practice, deployment of refraction networking has so far been
at access, rather than transit ISPs [20]. This may be in part because
a transit ISP has a large number of routers and points-of-presence,
significantly raising the costs of deployment [22].2 Likewise, we
expect Conjure to use address space announced by the ISP, rather
than addresses relayed by it, which mitigates routing-based attacks.
Depending on the size of the ISP, however, a censor may decide to
block the entirety of its address space, which would incur smaller
collateral damage than blocking all addresses seen by a transit ISP.

2We note that Gosain et al. [22] use an estimate of $885,000/proxy, while Frolov et
al. [20] report line-rate TapDance deployment using commodity hardware that costs
only several thousand dollars.
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No inline blocking # # #  # # #  
Handles asym. routing #  #   #   
Replay attack resistant    #     
Traffic analysis resistant # # # # G#  G# #
Unlimited Session Length    # # # #  

Table 2: Comparing Refraction Networking Schemes— “No inline blocking” corresponds to schemes that can operate as a passive tap on the side without
needing an inline element in the ISP network. “Handles asymmetric routes” refers to schemes that work when only one direction (either client to decoy or
decoy to server) is seen by the station. “Replay attacks” refers to censors who may replay/preplay previous messages or actively probe the protocol. “Traffic
analysis” includes latency, inter-packet timing, and website fingerprinting. “Unlimited Sessions” shows schemes that do not need to repeatedly reconnect to
download or upload arbitrarily large content.

8.3 Avoiding Destination Blocking
Traditionally, proxies deployed for censorship are eventually iden-
tified and blocked by the censor. Several proposals have been made
to carefully control the distribution of proxy addresses, using so-
cial connections and reputation [9, 38, 55]. Nevertheless, keeping
this information secret is challenging; additionally, censors often
employ active scanning techniques to discover proxies [10]. Re-
fraction networking generally assumes that clients have no secret
information, and instead relies on the collateral damage that would
result from blocking all the potential decoy destinations. Conjure
furthers this goal by creating a large number of destinations out
of the dark space. A similar approach was conceptualized in DE-
FIANCE [32], where censored Tor clients connect to pools of ad-
dresses that are volunteered to run Tor bridge nodes. DEFIANCE
also requires volunteer web servers to run specialized servers to dis-
tribute information. Unlike Conjure, DEFIANCE was not designed
to run at an ISP, and involves many moving parts that present
single points of failure if blocked by a censor. In contrast, Con-
jure has a relatively simple yet flexible design, allowing it to easily
respond to censors. Another similar approach was taken by Cen-
sorSpoofer [54], which spoofed traffic from a large set of dummy
destinations. CensorSpoofer, however, could only send information
in one direction—to the client—and had to rely on a separate out-of-
band channel for client-to-proxy communication. As an alternative
approach, FlashProxy [16] and Snowflake [23] allow users to run
Flash- or WebRTC-based proxies within their browser to allow
censored users to connect to the Tor network with the potential
to greatly increase the number. In practice, these proxies served
a very small number of users, as compared with other Tor bridge
transports.3

9 CONCLUSION AND FUTUREWORK
Conjure provides a much larger degree of engineering flexibility
than previous Refraction Networking schemes. Due to its modu-
lar design, different registration protocols and proxy transports
can be used interchangeably by the client. The flexibility of proxy

3https://metrics.torproject.org/userstats-bridge-transport.html?start=2017-
01-01&end=2019-02-15&transport=!<OR>&transport=websocket&transport=
snowflake

transports and simplicity of registration allows Conjure to incor-
porate state of the art censorship circumvention tools and resist
nation-state censors.

One obvious future direction is to study new options for regis-
tration and proxy transport. For instance, while Conjure currently
uses a TapDance- style covert channel for registration, we could
potentially cut down on the overhead of one-time registration by us-
ing port-knocking or using a Telex-style [60] tag (in the ClientHello
rather than Application Data).
Client-side applications Conjure provides an interesting op-
portunity to explore client mimicking phantom hosts. Rather than
pretend to be a server (e.g., a mask site), our transport itself could
connect to a newly registered client from the phantom host ad-
dress. Possible protocols could include WebRTC, mentioned in Sec-
tion 4.2.4, or other peer-to-peer protocols such as BitTorrent, Skype,
or Bitcoin.
Traffic analysis Conjure could also support applications that
tradeoff performance for observability. While Slitheen offers ideal
mimicry of decoys, it comes at a high cost of overhead. Conjure
transports such as mask site could implement Slitheen in order
to perfectly mimic the decoy site’s latency, packet timings, and
payload sizes. In addition, careful choice of mask sites may allow
for higher performance, as sites with more replaceable content can
carry more covert data.
Long-term deployment Ultimately, the goal for Refraction Net-
working protocols is to be useful in circumventing censorship.
While it has taken many years for research protocols to mature, we
are excited to see schemes like TapDance deployed in practice [20].
We believe Conjure can be even easier to deploy at scale, and we
hope to leverage the existing success of TapDance to place Conjure
stations at real ISPs.
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