PE-ARP: Port Enhanced ARP for IPv4
Address Sharing

Manish Karir, Eric Wustrow, Jim Rees
Networking Research and Development
Merit Network Inc.

Ann Arbor, MI 48104 USA
{mkarir, ewust, rees} @merit.edu

Abstract— The Internet is rapidly nearing IPv4 address
space exhaustion. Current projections predict that within
the next two years, all IPv4 address blocks will have
been assigned. Various methods such as IPv6 and IPv4
NAT have been proposed to address this scarcity. IPv6
introduces a new set of networking protocols that expands
the available number of Internet addresses, while NAT
relies on modification of packet headers by the network to
implement IPv4 address sharing. In this paper we present
a technique that allows multiple end hosts on a network to
share a single IP address by relying on the use of a modified
hardware address resolution protocol. Using the proposed
approach it is possible to allow thousands of end hosts to
share a single IPv4 address and at the same time be able to
maintain an end-to-end consistent network. Our approach
is fundamentally different from current techniques, as it
does not require that packets from the end-host be modified
at the network layer by an intermediate entity as they
transit the network. In addition, each end-host can use a
valid routable public IP address. We focus on an expanded
use of existing networking protocols such as ARP and
DNS to build a novel IPv4 address sharing technique. We
have developed an initial implementation of our ideas via
a modified Linux kernel which demonstrates the feasibility
of our approach.

I. INTRODUCTION

Current projections indicate that within the next two
years, all available IPv4 address blocks will have been
assigned [1]. The resulting shortage of IP addresses
would severely limit innovation on the Internet and even
its continued spread throughout the world. While IPv6
would expand the available number of Internet addresses,
adoption has been slow, as it requires not only new hard-
ware and software to be pervasively deployed, but also
requires network operators to transition entire networks
and user bases to this new set of networking proto-
cols. Understandably, this has greatly slowed adoption.
Network Address Translation (NAT) has emerged as an
approach to share existing IPv4 address among multiple
end-hosts by hiding several hosts behind a single public
IPv4 address [2]. While to an outside observer, the hosts
appear to have the same IP address, they in fact have

distinct private IP addresses internally. This approach is
fundamentally in conflict with the end-to-end approach
to network design, which has been the cornerstone of
the development of the Internet.

Our approach, called Port Enhanced ARP (PE-ARP),
shares a single, publicly routable IP address among a
group of hosts. Each host is assigned a unique, con-
tiguous range of TCP and UDP port numbers. The
combination of IP address and port range is used to
uniquely identify each host. A modified version of the
Address Resolution Protocol (ARP) [3] is used to direct
incoming packets to the correct end host. No address
translation is done and packets are not modified in
transit.

The proposed technique has several advantages over
existing methods for IPv4 address sharing or even IPv6:

o It does not require a massive global hardware or
software upgrade.

o A single site can choose to use this technique
and obtain its full benefits while at the same time
continuing to be completely interoperable with the
rest of the Internet.

« It does not require packet modifications that violate
the end-to-end principle.

o It requires only simple software changes to existing
hosts.

The rest of this paper is organized as follows: Section
II describes the detailed architecture and concepts of PE-
ARP; Section III provides details regarding the structure
of the standard ARP protocol implementation in the
Linux kernel, followed by our modifications; Section IV
describes two deployment scenarios and our experiments
with using PE-ARP in diferent network configurations;
Section V provides a description of some related work;
Section VI provides our conclusions and outlines future
work.

% Internet

R/)
2

~N
Shared IPv4 Address

odified ARP TABLE

192.168.1.1:3000-3009 00:AA:11:44:DD:EE
192.168.1.1:3010-3020 00:11:22:33:44:55
192.168.1.1:4000-4000 00:66:AA:11:33:22
192.168.1.1:4050-4060 :33:11:55:

Fig. 1. End-to-End Consistent IPv4 Address Sharing

II. END-TO-END CONSISTENT IPV4 ADDRESS
SHARING

The ideas outlined in this paper are based on three
key insights. The first is that each end-host already has
a unique hardware address (MAC address) and does not
really need a unique IP address as an identifier. All
that is necessary is that the IP header contains enough
information to ensure that an incoming packet is able
to reach the correct end-host. The second important
observation is that large portions of the local port range
are currently unused at an end host. Last of all, we
note that the current Address Resolution Protocol (ARP)
mechanism makes an implicit assumption that a single
IP address should map to a single MAC address. This
one-to-one mapping could be extended such that a single
IP address can map to different MAC addresses based
on other information available in the IPv4 header.

Based on these insights, we are able to define a new
technique that allows a single IPv4 address to be shared
across multiple end-hosts. We combine the port and the
IP address to create a unique identifier that can be used
by the ARP mechanism. PE-ARP can be implemented
via a modified ARP table that resolves this combination
of IP address and port number to a single unique MAC
address, instead of simply resolving an IP address to
a MAC address. However, care must now be taken to
ensure that the local port ranges used by end-hosts
sharing the same IP address do not overlap. This can
be implemented via software modules that control which
local ports are in use by an end-host and communicate
this information to the local edge router.

Figure 1 describes the overall architecture of address
sharing with PE-ARP. Labels 1-4 indicate modifications
that are needed at a local site. In the subsections below
we provide details about how each of these can be
implemented.

A. End-Host Source Port Range Management Agent

The first component of the system is the end-host
software module. Each application on a network end-
host requests and obtains local port values from the
operating system. These values can either be explicitly
requested by the application or randomly assigned by the
Operating System. To enable IPv4 address sharing, the
range of local port values that is used by each end-host
must be limited. This functionality can be implemented
in a number of ways which will most likely be dependent
on the specific Operating System.

The purpose of this local port range management
agent is to intercept all local port requests from applica-
tions and to respond with values from fixed ranges. The
ability to limit the range of values from which ports can
be used is essential and allows us to reuse the remaining
portions on another end-host.

The port range assigned to each end host could be
generated in a number of ways. It could, for example,
be statically configured at each host, it could be supplied
via dhcp, or hosts could even randomly select port
ranges and then perform conflict resolution to ensure
non-overlapping port allocations.

B. Network Communication Protocol for IP Address and
Port Information

The second major component of the system is the
network communication protocol to share local port
range information with the local network. The ultimate
goal of this protocol is to provide every host on the
network with enough information to send IPv4 packets
to the correct physical host.

We have extended ARP to include both IP addresses
and port ranges so it can be used to locate PE-ARP hosts.
When the local router needs to know what host is using a
particular port, the router sends out a broadcast request
for the information (PE-ARP_REQUEST). The correct
host responds (PE-ARP_REPLY), providing its hardware
address and full local port range.

C. Mapping IPv4 packets to network end-hosts

The third component of the overall PE-ARP architec-
ture is the extension to the local ARP table. When a
packet arrives from the Internet to the local router, the
router has to determine the packet’s end-host destination.
In current networks, the local router stores a mapping
between IP addresses and physical MAC addresses.
However, we now allow multiple end-hosts to share the
same IPv4 address, so this information is no longer
sufficient to uniquely identify the destination end-host
for a packet. Instead, a modified table is used that
employs both IP and port information to determine the
MAC address of the end-host for which the packets are

intended. The structure of this table is shown in Figure
1.

In addition to the IP address, this table includes two
port values, which are used to specify the range of ports
that are associated with a given host.

D. Enhanced DNS Look-Up Service: Dissemination of
IP and Port Information via DNS

The operation of services on well-known ports is a
challenge in an environment where the single unique
IP address per end-host restriction has been eliminated.
These complications exist in NAT and other current
IPv4 address sharing techniques and have not been
adequately addressed. Providing services from behind a
NAT requires that the NAT be configured to translate the
public service port to the end-host’s service port.

With PE-ARP no port translation is done, but each
host can only provide services on those ports which it
has been assigned. If the well-known port of the service
is not in that host’s range, the host cannot provide the
service at that port and must use a different port within
its range.

One possible solution is the use of DNS SRV records
[4] for locating services on PE-ARP hosts. An SRV
record maps a domain name and a service name to a
canonical domain name and a port number. A PE-ARP
service host can publish its service ports in this way.
One problem with this approach is that not all client
applications are capable of using SRV records in place
of well-known ports.

III. IMPLEMENTING PE-ARP

We have developed a prototype implementation of PE-
ARP based on the Linux kernel version 2.6.29.3. In the
following subsections we provide a high-level overview
of the existing ARP implemenation in Linux, followed
by our changes to this implementation. Next we describe
two deployment scenarios for PE-ARP in a bridge and
a router based edge network.

A. Background: ARP in the Linux Kernel

The ARP implementation in the Linux kernel relies on
the core neighbour structure defined in arp.h. A sim-
plified version of the neighbour struct is shown in Figure
2. ARP responses are cached as entries (neighbours) in
a chaining hash table.

When a packet is passed down the networking stack
for transmission, the packet needs to have the link-layer
header filled in based on the destination IP. To do this,
a lookup is performed on the ARP table. The lookup
function hashes the IP address and device arguments and
performs a lookup in the ARP hash table. If a valid
entry matches, either the ha[] field or the xhh cache

struct neighbour
{
struct neighbour *next;
struct net_device *dev;
us nud_state;
unsigned char ha[MAX_ADDR_LEN];
struct hh_cache *hh;
struct sk_buff head arp_queue;
us primary_key([0];
i

Where:
struct neighbour *next :pointer to the next neighbour in the hash chain
u8 nud_state :flag that specifies the state of this entry.
unsigned char ha[] :thardware address (aligned to a 4 byte boundry)
struct hh_cache *hh :pointer to the hardware header cache. This
is a cache of the entire layer 2 header
(Source/Destination MAC and Ethertype)
struct sk_buff_head arp_queue :queue of skbs (packets)
that require this neighbour entry
:the IP address. Notice that it is
of zero length; neighbours must be allocated
with sizeof(struct neighbour) += PROTOCOL_ADDR_LEN

u8 primary_key[0]

Fig. 2. The Neighbour Data Structure in the Linux Kernel

of the entry will be used to fill in the link-layer header. If
no entry is found in the hash table, one is created with
primary_key filled in, and state set to incomplete.
The packet is then pushed onto the arp_queue of the
incomplete entry.

Every so often, a timer is triggered to check the state
of the neighbour table entries. Incomplete entries prompt
ARP requests to be sent to populate this entry. An ARP
request is analogous to the English query “Who (what
MAC address) has 10.0.0.1? Tell me at 10.0.0.7 (MAC
address 00:12:34:56:78:9A).

TABLE I
EXISTING ARP STRUCTURE

Bit 0-7 8-15 16-31
0 Hardware Type | Protocol type

32 | Hardware Len | Protocol Len | Operation

64 Sender HW Addr

96 Sender HW Addr Sender Protocol Addr
128 Sender Protocol Addr Target HW Addr
160 Target HW Addr
192 Target Protocol Addr

Hardware Type: Link-layer protocol. Ethernet is 0x1
Protocol Type: Network-layer protocol. IPv4 is 0x0800
Hardware Len/Protocol Len - size in bytes of the link-layer and
network-layer addresses
Operation: Type of ARP packet. ARP_.REQUEST, or ARP_REPLY
Sender HW Addr: Link-layer or MAC address of the sender
Sender Protocol Addr: Network-layer or IP address of the sender
Target HW Addr: Link-layer address of the receiver ARP packet.
Target Protocol Addr: Network-layer address of the receiver.
This is the IP address that is being looked up

Table I describes the structure of an ARP packet.
When the Linux kernel receives an ARP packet, it first
determines if the ARP packet is intended for itself,
regardless of the operation (request or reply). It deter-
mines this by checking if the Target Protocol Address
matches one of its own. If the receiver finds the packet

is sent to it, it then performs a lookup in the ARP hash
table for the Sender Protocol Address (or creates one
if one does not exist). It updates this entry to contain
the Sender Hardware Address. If the ARP operation
was a request, the receiver then sends a reply, with its
Hardware address filled in. The ARP reply is similar
to saying ‘10.0.0.1 is at 00:FE:DC:BA:98:76.” When
a neighbour entry is updated by an ARP packet, the
arp_queue in the neighbour entry is checked. Any queued
packets are pulled off the queue, filled in with the
correct link-layer destination and sent to the device for
transmission.

B. PE-ARP in the Linux Kernel

Our current proof-of-concept implementation of PE-
ARP consists of three of the four components described
in the overall architecture in Section II. The first is a sim-
ple mechanism to control source port range allocation at
an end host, the second is the actual modified ARP table,
and the third is the port enabled ARP query/response
packets and protocol. We anticipate implementing the
fourth DNS integration component in our future work.
We are able to fully demonstrate IP address sharing
capability of PE-ARP with our current prototype.

While the PE-ARP architecture allows for a range
of methods to implement source port range allocation
to an end host, for the purposes of our prototype we
use the simplest mechanism of manually allocating and
configuring these values on our testbed. In Linux the
range of available source ports can be set with the
net.ipv4.ip_local_port_range sysctl

The addition of port numbers to the ARP table can
be implemented by modifying the neighbour struct de-
scribed in Figure 2. We added an additional member to
this data structure to store a port range as shown below.

unsigned short port_range[2];

port_range[0] is the lowest port number in the
range allocated to an end host, and port_range[1]
is the upper limit (both inclusive). These values are both
0 if the entry applies for all ports. Care must be taken
in modifying the neighbour data structure to ensure that
the primary_key field is always the last component.

In addition to the modified ARP table we also need
to modify the ARP query/response packet structures to
include port information. Since we wanted to allow for
backwards compatibility in our prototype, all of the
information was appended to the end of the existing ARP
packet format, and a magic number was used to denote
the use of PE-ARP. Table II shows the additional fields
required by PE-ARP which are simply appended to the
regular ARP packet format described in Table 1. Both
PE-ARP_REQUEST and PE-ARP_REPLY use the same
packet format.

TABLE 11
NEW ARP STRUCTURE

Bit 0-15 16-31

224 | Magic Value (OXEAAB) | Sender Port Range Low
256 | Sender Port Range High Target Port

288 Return Port

Magic Value: The special designator for PE-ARP packets

Sender Port Range High/Low: The bounds of the sender port range

Target Port: The port we are looking up. This cannot be a
range because the sender cannot know what range an arbitrary port
falls in. For an ARP_REPLY, this just needs to be a port in the
requestor’s range, so we choose the Sender Port Range Low from
the corresponding request

Return Port: For an ARP_REPLY, this is the Target Port requested
in the corresponding ARP_REQUEST. For an ARP_REQUEST,
Return Port is set to Sender Port Range Low

pe-arp-hostA:~$ arp -n
Address
192.35.162.2:2000-2999
192.35.162.2:3000-3999
198.108.63.1:0-0

HWaddress

00:0c:29:9e:8c:ee
00:0c:29:39:44:ab
00:12:7f:c4:38:d3

Iface
ethl
ethl
etho

HWtype
ether
ether
ether

Fig. 3. Output of arp -n command showing the PE-ARP table

With the above data structure and packet format
changes in place, the next step is to modify the standard
ARP processing code in the Linux kernel to make it
port aware at each step. At an end host, when we are
trying to send packets out, we must first check to see
if the destination IP:port range is not in our local ARP
cache. As per standard ARP processing, we create an
incomplete entry for that IP address in the ARP table,
however we also set the port_range (low and high) to
be equal to the destination port of the packet we are
sending. An PE-ARP request is then sent, which appears
as follows: ‘Who has 10.0.0.1:22? I have 10.0.0.1:100-
199 (MAC 00:12:34:56:78:9A).

On receiving the PE-ARP request a node checks to
see if the Target Protocol Address matches its own, and
if the Target Port is within its configured range. If both
are a match, the node will first update its own PE-ARP
table by performing a neighbour entry lookup for the
Sender Protocol Address and Return Port and updating
this entry with the Sender Hardware Address, and Sender
port range, or create it if it does not exist and then finally
the node will send the PE-ARP response back to the
requestor as follows: 10.0.0.1:22 is really 10.0.0.1:10-
99 (MAC 00:FE:DC:BA:98:76).

One final set of changes that are required are to the
routing code to ensure that the end host does not assume
that a packet to an IP address of one of its interfaces is
local - it must also check the destination port number
against is configured port range. Figure 3 shows an
example ARP table. There are multiple entries for the
same [P address which are differentiated by port range.

-
- = 17878

..63.2:10-19
Host A
,F,‘B—i‘,—‘.ef - etho
» Internet Eayi— B onoA
eth0 eth1 ..63.2:20-29
11212 G1AA Host B
.62.2 ..63.1
-
—1 M | :BC:BC
- ..63.2:30-39
Host C

Fig. 4. PE-ARP Router Scenario: Host A, B, and C all share the
same IP (198.108.63.2). Each host is limited to a port range. Interfaces
are shown with shortened MAC address and IP address/port range (if
applicable)

Each entry points to a unique MAC address.

IV. DEPLOYMENT SCENARIOS AND EXPERIMENTS

During our development of the PE-ARP prototype we
considered two primary deployment scenarios. We have
been successfully able to create a shared IP address
environment in both these scenarios by using our im-
plementation of PE-ARP. The first is a PE-ARP router
and the second is a bridge.

A. PE-ARP Enabled Router

In order to forward packets to the correct end host
the local last-hop router must also be made port-aware.
However, it should be noted that we do not require any
changes to the packet forwarding or routing functions
of the router. The only changes that are necessary are
to the MAC address lookup capability. This PE-ARP
capabilty is identical to the implementation on other
end hosts described in the previous section. In fact our
Linux implementation of this scenario did not require
us to make any additional modifications to the Linux
based router we used for this purpose. The PE-ARP
modifications were sufficient for the router to be able
to forward packets to the correct end-host.

The gateway in this configuration has two physical
interfaces Each interface has an IP address on different
networks that this gateway is routing between. The PE-
ARP aware hosts can share one or more IP addresses on
the local network (198.108.63.0/24). It should be noted
that the router interface IP address on the local subnet
itself should not be a shared IP as this IP address will
be used as the next-hop for all outgoing traffic. Figure
4 shows this basic setup.

There are three packet forwarding scenarios to con-
sider. Outgoing traffic from the end hosts to the Internet,
inbound traffic from the Internet to the hosts, and finally
communication between the hosts in the local subnet.
In the case of outbound traffic, each end host only

allows applications to use ports in its configured port
range and then forwards the packets to the gateway.
The gateway simply forwards these to the Internet with-
out any additional PE-ARP related processing. Inbound
traffic processing is more involved. In this scenario, the
gateway performs a PE-ARP lookup to determine which
destination MAC address it should forward an incoming
packet to. Any communication between hosts in the local
network must also use PE-ARP lookups to identify the
correct targets before sending packets.

B. PE-ARP Bridge

Though our tests used a Linux based router, in general,
the PE-ARP enabled router architecture described in
the previous section would require that various hard-
ware vendors develop implementations suitable for their
platforms before a given site can benefit from the IP
address sharing capabilities of PE-ARP. Therefore as
an alternative we have also implemented a Linux-based
Bridge to allow easier adoption of PE-ARP. Figure 5
shows this deployment scenario.

In a typical bridge, there are two or more physical
interfaces. Each interface has a unique MAC address,
but no IP is assigned to either. In Linux, the bridged
interfaces belong to a virtual interface, which may have
an IP address (and whose MAC address is one of the
physical interfaces). In normal bridge operation, any
packets that come in on one interfaces get re-sent on
the other. From a Layer 2 perspective, the gateway in
Figure 5 sends packets to the PE-Bridge using standard
ARP. However, the PE-Bridge must perform a PE-ARP
lookup on the local network to determine which host it
should forward the packets to.

The PE-Bridge first checks the destination IP of an
incoming packet against the shared IP address. This
requires the bridge to know what the shared IP is. This
can be implemented via a simple configuration file. For
our test scenario, we accomplished this by requiring the
bridged interface (br0) to have the shared IP assigned
to it. Once the PE-Bridge determines the packet is to the
shared IP, it performs a lookup based on the destination
IP and port. If an entry is found in the PE-ARP table, it
is used to re-write the destination MAC address, and the
packet continues through the bridge. If no entry is found,
the bridge creates a dummy entry in the arp table for
destIP:dport-dport, and pushes the packet onto
the arp_queue of that entry. A PE-ARP request then
occurs on the local network, and the response is used to
populate the entry, and send the waiting packet out. For
traffic that does not use ports (non TCP nor UDP), the
packet is simply sent through the bridge unaltered.

-,
- = 17878

..63.2:10-19
Host A

Router Bridge _
-—4@ — BN | :0A:9A
~—— T .63.2:20-29

eth1 eth0-::34:34

% Internet

eth0
eth1 - ::56:56 Host B
V 622 831 anias

(.63.2)

- eth0
— - | :BC:BC

= 63.2:30-39
Host C

Fig. 5. PE-ARP Bridge Scenario: Host A, B, C and the PE-Bridge all
share the same IP (198.108.63.2). Each host is limited to a port range.
Interfaces are shown with shortened MAC address and IP address/port
range (if applicable)

V. RELATED WORK

There are two broad categories in which related work
in the area of IPv4 address space exhaustion can be
categorized. The first is the set of techniques that propose
to replace IPv4 with IPv6. We believe that though this
might be the ultimate long term solution to the IPv4 ad-
dress depletion problem, current adoption rates indicate
that it is unlikely that wide spread IPv6 deployments will
be in place prior to IPv4 address space exhaustion. The
second set of techniques in this area relate to the use
of NAT, proxies and Realm Specific Internet Protocol
(RSIP) [5]. All of these essentially attempt to isolate the
end host into a private network, which uses non-routable
IP addresses for communication with the outside world.
An in-line device is then responsible for modifying
packet headers and replacing private IP addresses with
addresses chosen from a public IP pool before these are
transmitted over the Internet [6].

Currently, the primary approach for IP address sharing
is Network Address Translation (NAT). NAT is the most
widely used technique to allow several network end-
hosts share a limited set of IPv4 addresses. This approach
relies on devices that modify IP addresses and port
numbers in IP packets, as they are transmitted from
the network end-host to the Internet. Such transparent
modifications of a packet between the source and the
destination make it extremely difficult to implement an
end-to-end security model. NAT also breaks any protocol
that depends on embedded addresses or port numbers, for
example FTP, peer-to-peer, or file system protocols that
depend on callbacks [7].

The A+P approach [8] of using port numbers to extend
the effective IPv4 address is similar in nature to our
approach in that they both reclaim unused source port
space as a part of the end-host identifier. This was
developed largely to address issues and complications
of the Carrier Grade NAT technique [9]. However, the
A+P scheme continues to rely on the use of a A+P NAT

middle device to implement NAT-like capability. Our
approach is fundamentally different in that we allow end
hosts to use valid public IP addresses, but only a limited
range of source ports. This enables them to communicate
directly with other services on the Internet without the
need for any network-layer packet translations in the
middle.

VI. CONCLUSIONS AND FUTURE WORK

We have PE-ARP installed on several test systems on
our network. We hope to gain more experience with PE-
ARP in a variety of situations including both desktop and
server use. We also plan to characterize the scalability of
the system and have begun measurements to determine
how large a pool of ports is required by a typical host.

Our prototype uses manual configuration of the port
ranges. We intend to implement an automatic system
for allocating and configuring the ranges, possibly using
DHCP [10].

We want to survey popular client applications to
see which, if any, are using DNS SRV records now,
and modify others to use these records. A new ap-
plication interface similar to gethostbyname () and
getservbyname () but that takes both a domain and a
service name, and returns an IP address and port number,
would make this easier. We also would like to implement
a way for PE-ARP hosts to register service ports as SRV
records using Dynamic DNS [11].

We hope to investigate the use of PE-ARP as part of an
IPv6 migration strategy. It should be possible to embed
a description of the port ranges into an IPv6 address,
which would give us the ability to directly map between
PE-ARP host identifiers and IPv6 addresses.

Our prototype runs on Linux, but there is nothing OS-
specific about it. We would like to implement prototypes
on popular consumer operating systems to investigate
portability and scaling on these platforms.

To encourage wider use and investigation of the PE-
ARP system we intend to write an Internet Draft to be
published within the IETF framework.

REFERENCES

[1] Geoff Huston. Ipv4 address
http://www.potaroo.net/tools/ipv4/index.html, July 2009.

[2] K. Egevang and P. Francis. The IP Network Address Translator
(NAT). RFC 1631 (Informational), May 1994. Obsoleted by RFC
3022.

[3] D. Plummer. Ethernet Address Resolution Protocol: Or Con-
verting Network Protocol Addresses to 48.bit Ethernet Address
for Transmission on Ethernet Hardware. RFC 826 (Standard),
November 1982. Updated by RFCs 5227, 5494.

[4] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for
specifying the location of services (DNS SRV). RFC 2782
(Proposed Standard), February 2000.

[5] M. Borella, D. Grabelsky, J. Lo, and K. Taniguchi. Realm
Specific IP: Protocol Specification. RFC 3103 (Experimental),
October 2001.

report.

[6]
[7]

[8]

[9]
[10]

(11]

L. Phifer. The trouble with NAT. The Internet Protocol Journal,
Dec 2000.

M. Holdrege and P. Srisuresh. Protocol Complications with the IP
Network Address Translator. RFC 3027 (Informational), January
2001.

O. Maennel, R. Bush, L. Cittadi, and S.M. Bellovin. A Better
Approach than Carrier-Grade-NAT. Technical Report CUCS-041-
80, Sep 2008.

A. Durand. Managing 100+ Million IP Addreses. NANOG37:
http://nanog.org/mtg-0606/durand.html, June 2006.

R. Droms. Dynamic Host Configuration Protocol. RFC 2131
(Draft Standard), March 1997. Updated by RFCs 3396, 4361,
5494.

P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic
Updates in the Domain Name System (DNS UPDATE). RFC
2136 (Proposed Standard), April 1997. Updated by RFCs 3007,
4035, 4033, 4034.

